Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Titanium Dioxide and Titanium Dioxide-Silver Nanoparticles on Seed Germination of Lettuce (Lactuca sativa)

Yıl 2016, Cilt: 31 Sayı: ÖS2, 193 - 198, 15.10.2016
https://doi.org/10.21605/cukurovaummfd.316762

Öz

The aim of this study was to evaluate the effects of TiO2 and TiO2Ag nanoparticles on seed germination of lettuce (Lactuca sativa). Two parameters were examined in this study: number of seed germination and root-shoot elongation. Lettuce seeds in petri dishes were separately treated with different concentrations (control, 10, 20, 40, 60, 80 and 100 mg/L) of 5 mL TiO2 and TiO2Ag nanoparticle suspensions. Number of seed germination was increased at increasing TiO2 nanoparticles concentration especially at 80 and 100 mg/L TiO2 with compared to control and also determined that radicle increased with TiO2 and TiO2Ag treatment at 20 mg/L and 10 mg/L respectively.

Kaynakça

  • 1. Santos, C.S.C., Gabriel, B., Blanchy, M., Menes, O., García, D., Blanco, M., Arconada, N., and Neto, V., 2015. Industrial Applications of Nanoparticles–a Prospective Overview, Materials Today: Proceedings, 2, 456–465.
  • 2. Shah, V., Belozerova, I., 2009. Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds, Water Air Soil Pollution, 197, 143–148.
  • 3. Lin, D., Xing, B., 2007. Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth, Environmental Pollution, 150, 243-250.
  • 4. Zou, X., Shi, J., Zhang, H., 2014. Coexistence of Silver and Titanium Dioxide Nanoparticles: Enhancing or Reducing Environmental Risks?, Aquatic Toxicology, 154, 168–175.
  • 5. Doolettea,C.L., McLaughlina, M.J., Kirby, J.K. Navarrobal, D.A., 2015. Bioavailability of Silver and Silver Sulfide Nanoparticles to Lettuce (Lactuca sativa): Effect of Agricultural Amendments on Plant Uptake, Journal of Hazardous Materials, 300, 788–795.
  • 6. Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M., Sarret, G., 2014. Foliar Exposure of the Crop Lactuca sativa to Silver Nanoparticles: Evidence for Internalization and Changes in Ag Speciation, Journal of Hazardous Materials, 264, 98–106.
  • 7. Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., Guo, H., 2011. TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil, Journal of Environmental Monitoring, 13, 822-828.
  • 8. Kundu, S., Adhikari, T., Rao, A.S., 2015. Nanotechnology, Plant Nutrition and Climate Change, Chapter 9 in Climate Dynamics in Horticultural Science, vol. 2, p. 152.
  • 9. Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.M., et al., 2012. Accumulation, Translocation and Impact of TiO2 Nanoparticles in Wheat (Triticum aestivum spp.): Influence of Diameter and Crystal Phase, Science of the Total Environment, 43, 197–208.
  • 10. Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., Lee, E.J., 2013. Functional Analyses of Nanoparticle Toxicity: A Comparative Study of the Effects of TiO2 and Ag on Tomatoes (Lycopersiconesculentum), Ecotoxicology and Environmental Safety, 93, 60-67.
  • 11. Gubbins, E.J., Batty, L.J., Lead, J.R., 2011. Phytotoxicity of Silver Nanoparticles to Lemna Minor L., Environmental Pollution, 159, 1551-1559.
  • 12. Feizi, H., Amirmoradi, S., Abdollahi, F., Pour, S.J., 2013. Comparative Effects of Nano Sized and Bulk Titanium Dioxide Concentrations on Medicinal Plant Salvia officinalis L., Annual Review & Research in Biology, 3(4), 814-824.
  • 13. Ma, X., Geisler-Lee, J., Deng, Y., Kolmakov A., 2010. Interactions Between Engineered Nanoparticles (ENPs) and Plants: Phytotoxicity, Uptake and Accumulation Review, Science of The Total Environment, 408(16), 3053–3061.
  • 14. Khot, L.R, Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W., 2012. Applications of Nanomaterials in Agricultural Production and Crop Protection: A Review, Crop Protection, 35, 64-70.
  • 15. Barrena, R., Casals, E., Colon, J., Font, X., Sanchez, A., Puntes, V., 2009. Evaluation of the Ecotoxicity of Model Nanoparticles, Chemosphere.; 75, 850–857.
  • 16. Lee, W.M., An, Y.J., Yoon, H., Kweon, H.S., 2008. Toxicity and Bioavailability of Copper Nanoparticles to The Terrestrial Plants Mung Bean (Phaseolus Radiatus) and Wheat (Triticum Aestivum): Plant Agar Test For Water-Insoluble Nanoparticles, Environmental Toxicology and Chemistry, 27(9), 1915–1921.
  • 17. Yang, L., Watts, D.J. 2005. Particle Surface Characteristics May Play an Important Role in Phytotoxicity of Alumina Nanoparticles, Toxicol. Lett., 158, 122-132.
  • 18. Boonyanitipong, P., Kositsup, B., Kumar, P., Baruah, S., Dutta, J., 2011. Toxicity of ZnO and TiO2 Nanoparticles on Germinating Rice Seed Oryzasativa L., International Journal of Bioscience, Biochemistry and Bioinformatics, 1(4), 282-285.
  • 19. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Kumar, D.S., 2010. Nanoparticulate Material Delivery to Plants, Plant Science, 179, 154–163.

Titanyum Dioksit ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa)Tohumunun Çimlenmesine Etkisi

Yıl 2016, Cilt: 31 Sayı: ÖS2, 193 - 198, 15.10.2016
https://doi.org/10.21605/cukurovaummfd.316762

Öz

Bu çalışmanın temel amacı TiO2 ve TiO2Ag nanopartiküllerinin marul (Lactuca sativa) bitkisinin tohum çimlenmesine etkisinin değerlendirilmesidir. Çalışmada iki farklı parametre değerlendirilmiştir: tohum çimlenme sayısı ve kök-gövde uzaması. Marul tohumları petri kaplarına yerleştirildikten sonra farklı derişimlerdeki (kontrol, 10, 20, 40, 60, 80 ve 100 mg/L) 5’er mL TiO2 ve TiO2Ag nanopartikül süspansiyonlarına maruz bırakılmıştır. Sonuçta marul tohumlarının çimlenme sayılarının nanopartikül derişimi arttıkça arttığı ve bu artışın özellikle 80 ve 100 mg/L TiO2 konsantrasyonlarında gerçekleştiği belirlenmiştir. Ayrıca kök radikula uzamasının 20 mg/L TiO2 ve 10 mg/L TiO2Ag nanopartikül derişimlerinde artış gösterdiği tespit edilmiştir.

Kaynakça

  • 1. Santos, C.S.C., Gabriel, B., Blanchy, M., Menes, O., García, D., Blanco, M., Arconada, N., and Neto, V., 2015. Industrial Applications of Nanoparticles–a Prospective Overview, Materials Today: Proceedings, 2, 456–465.
  • 2. Shah, V., Belozerova, I., 2009. Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds, Water Air Soil Pollution, 197, 143–148.
  • 3. Lin, D., Xing, B., 2007. Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth, Environmental Pollution, 150, 243-250.
  • 4. Zou, X., Shi, J., Zhang, H., 2014. Coexistence of Silver and Titanium Dioxide Nanoparticles: Enhancing or Reducing Environmental Risks?, Aquatic Toxicology, 154, 168–175.
  • 5. Doolettea,C.L., McLaughlina, M.J., Kirby, J.K. Navarrobal, D.A., 2015. Bioavailability of Silver and Silver Sulfide Nanoparticles to Lettuce (Lactuca sativa): Effect of Agricultural Amendments on Plant Uptake, Journal of Hazardous Materials, 300, 788–795.
  • 6. Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M., Sarret, G., 2014. Foliar Exposure of the Crop Lactuca sativa to Silver Nanoparticles: Evidence for Internalization and Changes in Ag Speciation, Journal of Hazardous Materials, 264, 98–106.
  • 7. Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., Guo, H., 2011. TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil, Journal of Environmental Monitoring, 13, 822-828.
  • 8. Kundu, S., Adhikari, T., Rao, A.S., 2015. Nanotechnology, Plant Nutrition and Climate Change, Chapter 9 in Climate Dynamics in Horticultural Science, vol. 2, p. 152.
  • 9. Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.M., et al., 2012. Accumulation, Translocation and Impact of TiO2 Nanoparticles in Wheat (Triticum aestivum spp.): Influence of Diameter and Crystal Phase, Science of the Total Environment, 43, 197–208.
  • 10. Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., Lee, E.J., 2013. Functional Analyses of Nanoparticle Toxicity: A Comparative Study of the Effects of TiO2 and Ag on Tomatoes (Lycopersiconesculentum), Ecotoxicology and Environmental Safety, 93, 60-67.
  • 11. Gubbins, E.J., Batty, L.J., Lead, J.R., 2011. Phytotoxicity of Silver Nanoparticles to Lemna Minor L., Environmental Pollution, 159, 1551-1559.
  • 12. Feizi, H., Amirmoradi, S., Abdollahi, F., Pour, S.J., 2013. Comparative Effects of Nano Sized and Bulk Titanium Dioxide Concentrations on Medicinal Plant Salvia officinalis L., Annual Review & Research in Biology, 3(4), 814-824.
  • 13. Ma, X., Geisler-Lee, J., Deng, Y., Kolmakov A., 2010. Interactions Between Engineered Nanoparticles (ENPs) and Plants: Phytotoxicity, Uptake and Accumulation Review, Science of The Total Environment, 408(16), 3053–3061.
  • 14. Khot, L.R, Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W., 2012. Applications of Nanomaterials in Agricultural Production and Crop Protection: A Review, Crop Protection, 35, 64-70.
  • 15. Barrena, R., Casals, E., Colon, J., Font, X., Sanchez, A., Puntes, V., 2009. Evaluation of the Ecotoxicity of Model Nanoparticles, Chemosphere.; 75, 850–857.
  • 16. Lee, W.M., An, Y.J., Yoon, H., Kweon, H.S., 2008. Toxicity and Bioavailability of Copper Nanoparticles to The Terrestrial Plants Mung Bean (Phaseolus Radiatus) and Wheat (Triticum Aestivum): Plant Agar Test For Water-Insoluble Nanoparticles, Environmental Toxicology and Chemistry, 27(9), 1915–1921.
  • 17. Yang, L., Watts, D.J. 2005. Particle Surface Characteristics May Play an Important Role in Phytotoxicity of Alumina Nanoparticles, Toxicol. Lett., 158, 122-132.
  • 18. Boonyanitipong, P., Kositsup, B., Kumar, P., Baruah, S., Dutta, J., 2011. Toxicity of ZnO and TiO2 Nanoparticles on Germinating Rice Seed Oryzasativa L., International Journal of Bioscience, Biochemistry and Bioinformatics, 1(4), 282-285.
  • 19. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Kumar, D.S., 2010. Nanoparticulate Material Delivery to Plants, Plant Science, 179, 154–163.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Zeynep Görkem Doğaroğlu Bu kişi benim

Nurcan Köleli Bu kişi benim

Yayımlanma Tarihi 15 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 31 Sayı: ÖS2

Kaynak Göster

APA Doğaroğlu, Z. G., & Köleli, N. (2016). Titanyum Dioksit ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa)Tohumunun Çimlenmesine Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(ÖS2), 193-198. https://doi.org/10.21605/cukurovaummfd.316762
AMA Doğaroğlu ZG, Köleli N. Titanyum Dioksit ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa)Tohumunun Çimlenmesine Etkisi. cukurovaummfd. Eylül 2016;31(ÖS2):193-198. doi:10.21605/cukurovaummfd.316762
Chicago Doğaroğlu, Zeynep Görkem, ve Nurcan Köleli. “Titanyum Dioksit Ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa)Tohumunun Çimlenmesine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31, sy. ÖS2 (Eylül 2016): 193-98. https://doi.org/10.21605/cukurovaummfd.316762.
EndNote Doğaroğlu ZG, Köleli N (01 Eylül 2016) Titanyum Dioksit ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa)Tohumunun Çimlenmesine Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31 ÖS2 193–198.
IEEE Z. G. Doğaroğlu ve N. Köleli, “Titanyum Dioksit ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa)Tohumunun Çimlenmesine Etkisi”, cukurovaummfd, c. 31, sy. ÖS2, ss. 193–198, 2016, doi: 10.21605/cukurovaummfd.316762.
ISNAD Doğaroğlu, Zeynep Görkem - Köleli, Nurcan. “Titanyum Dioksit Ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa)Tohumunun Çimlenmesine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31/ÖS2 (Eylül 2016), 193-198. https://doi.org/10.21605/cukurovaummfd.316762.
JAMA Doğaroğlu ZG, Köleli N. Titanyum Dioksit ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa)Tohumunun Çimlenmesine Etkisi. cukurovaummfd. 2016;31:193–198.
MLA Doğaroğlu, Zeynep Görkem ve Nurcan Köleli. “Titanyum Dioksit Ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa)Tohumunun Çimlenmesine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 31, sy. ÖS2, 2016, ss. 193-8, doi:10.21605/cukurovaummfd.316762.
Vancouver Doğaroğlu ZG, Köleli N. Titanyum Dioksit ve Titanyum Dioksit-Gümüş Nanopartiküllerinin Marul (Lactuca sativa)Tohumunun Çimlenmesine Etkisi. cukurovaummfd. 2016;31(ÖS2):193-8.