İstenen Piston Hızları için Giriş Parametrelerinin Seçilmesi Amacıyla Krank-Biyel Mekanizmasının Dinamik Modellenmesi: Topaklanmış Kütle Yöntemi
Yıl 2018,
Cilt: 33 Sayı: 4, 67 - 82, 31.12.2018
Mehmet İlteriş Sarıgeçili
İbrahim Deniz Akçalı
Öz
Piston hızının çıkarılması için, krank-pim merkezine bir kuvvet uygulanan krank-biyel mekanizmasının dinamik davranışı modellenmiştir. Dahil edilen parametrelerin çokluğu göz önüne alındığında ikinci dereceden lineer olmayan bir diferansiyel denklem şeklinde kompakt bir denklem elde etmek için topaklanmış parametre yöntemi tercih edilmiştir. Elde edilen denklemin karmaşıklığı, bir sayısal çözüm yöntemi uygulamayı zorunlu kılmıştır. Bu yolla çalışmada seçilen parametrelerin piston hızı üzerindeki etkileri incelenmiştir. Benzer şartlar altında deneysel bir model hazırlanmış ve sonuçları karşılaştırmak için testler gerçekleştirilmiştir. İki sonuç arasında elde edilen düşük hata oranları geliştirilen modelin geçerliliğini kanıtlamıştır.
Kaynakça
- 1. Vinogradov, O., 2000. Fundamentals of Kinematics and Dynamics of Machines and Mechanisms (1st ed.), CRC Press, Boca Raton (FL).
- 2. Myszka, D., 2012. Machines and Mechanisms, Applied Kinematic Analysis (4th ed.), Prentice Hall, Upper Saddle River (NJ).
- 3. Erdil, A.H., 1998. Buz Kalıplarından Kar Üretilmesi İçin Bir Makina Tasarımı, Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, 94.
- 4. Sarigecili, M.I., Akcali, I.D., 2018. Development of Constant Output–input Force Ratio in Slider–crank Mechanisms, Inverse Problems in Science and Engineering. (In Press) DOI: 10.1080/17415977.2018.1470625.
- 5. Franco, W., Iarussi, F., Quaglia, G., 2016. Human powered press for producing straw bales for use in construction during post-emergency conditions, Biosystems Engineering, 150, 170181. DOI: 10.1016/j.biosystemseng.2016.08. 007.
- 6. Halicioglu, R., Dulger, L.C., Bozdana, A.T., 2016. Structural Design and Analysis of a Servo Crank Press, Engineering Science and Technology, an International Journal, 19(4), 2060-2072. DOI: 10.1016/j.jestch.2016.08.008.
- 7. Erkaya, S., Su, Ş., Uzmay, İ., 2007. Dynamic Analysis of a Slider–crank Mechanism with Eccentric Connector and Planetary Gears, Mechanism and Machine Theory, 42(4), 393-408. DOI: 10.1016/j.mechmachtheory. 2006.04.011.
- 8. Ha, J.L., Fung, R.F., Chen, K.Y., Hsien, S.C., 2006. Dynamic Modeling and Identification of a Slider-crank Mechanism, Journal of Sound and Vibration, 289(4–5), 1019-1044. DOI: 10.1016/j.jsv.2005.03.011.
- 9. Huang, M.S., Chen, K.Y., Fung, R.F., 2010. Comparison Between Mathematical Modeling and Experimental Identification of a Spatial Slider–crank Mechanism, Applied Mathematical Modelling, 34(8), 2059-2073. DOI: 10.1016/j.apm.2009.10.018.
- 10. Fung, R.F., Chiang, C.L., Chen, S.J., 2009. Dynamic Modelling of an Intermittent Slider– crank Mechanism, Applied Mathematical Modelling, 33, 2411-2420. DOI: 10.1016/j.apm. 2008.07.004.
- 11. Silva R., de C., Nunes, M.A.A., Bento, J.P.M., da Costa, V.E., 2013. Modelling an Inverted Slider Crank Mechanism Considering Kinematic Analysis and Multibody Aspects, Proceedings of the XV International Symposium on Dynamic Problems of Mechanics (DINAME 2013), Buzios, RJ, Brazil, 1-10.
- 12. Yan, H.S., Chen, W.R., 2000. On the Output Motion Characteristics of Variable Input Speed Servo-controlled Slider-crank Mechanisms, Mechanism and Machine Theory, 35(4), 541-561. DOI: 10.1016/S0094-114X(99)00023 -3.
- 13. Lin, F.J., Fung, R.F., Lin, H.H., Hong, C.M., 2001. A Supervisory Fuzzy Neural Network Controller for Slider-crank Mechanism, Mechatronics, 11(2), 227-250. DOI: 10.1016/ S0957-4158(99)00070-7.
- 14. Wai, R.J., Lin, F.J., 1998. A Fuzzy Neural Network Controller with Adaptive Learning Rates for Nonlinear Slider-crank Mechanism, Neurocomputing, 20(1–3), 295-320. DOI: 10.1016/S0925-2312(98)00022-8.
- 15. Zhao, B., Dai, X.D., Zhang, Z.N., Xie, Y.B., 2016. A New Numerical Method for Piston Dynamics and Lubrication Analysis, Tribology International, 94, 395-408. DOI: 10.1016/j. triboint.2015.09.037.
- 16. Reis, V.L., Daniel, G.B., Cavalca, K.L., 2014. Dynamic Analysis of a Lubricated Planar Slider–crank Mechanism Considering Friction and Hertz Contact Effects, Mechanism and Machine Theory, 74, 257-273. DOI: 10.1016/ j.mechmachtheory.2013.11.009.
- 17. Wang, Y.M., Chen, C.H., 2012. The Dynamics of a Slider-crank Mechanism with a FourierSeries Based Axially Periodic Array NonHomogeneous Coupler, Journal of Sound and Vibration, 331(22), 4831-4847. DOI: 10.1016 /j.jsv.2012.05.025.
- 18. Akbari, S., Fallahi, F., Pirbodaghi, T., 2016. Dynamic Analysis and Controller Design for a Slider–crank Mechanism with Piezoelectric Actuators, Journal of Computational Design and Engineering, 3(4), 312-321. DOI: 10.1016/j.jcde.2016.05.002.
- 19. Hirschhorn, J., 1962. Kinematics and Dynamics of Plane Mechanisms (First ed.), McGraw-Hill New York.
- 20. Chapra, S.C., Canale, R.P., 2010. Numerical Methods for Engineers (Sixth ed.) McGrawHill, New York.
Dynamic Modeling of Slider-Crank Mechanism for Selecting Input Parameters for Desired Piston Speeds: Lumped Mass Approach
Yıl 2018,
Cilt: 33 Sayı: 4, 67 - 82, 31.12.2018
Mehmet İlteriş Sarıgeçili
İbrahim Deniz Akçalı
Öz
Here the dynamic behavior of slider-crank mechanism with a driving force applied at crank-pin center, has been modeled to formulate the piston speed. In view of the abundance of the parameters involved, a lumped parameter approach has been preferred to obtain a compact equation in the form of a second order nonlinear differential equation. The complexity of the resulting equation has mandated implementing a numerical solution technique by which the effects of the selected parameters on the piston speed have been investigated. Under similar conditions an experimental model has been prepared and the tests have been carried out to compare the results. Low error levels achieved in two results have demonstrated the validity of the developed model.
Kaynakça
- 1. Vinogradov, O., 2000. Fundamentals of Kinematics and Dynamics of Machines and Mechanisms (1st ed.), CRC Press, Boca Raton (FL).
- 2. Myszka, D., 2012. Machines and Mechanisms, Applied Kinematic Analysis (4th ed.), Prentice Hall, Upper Saddle River (NJ).
- 3. Erdil, A.H., 1998. Buz Kalıplarından Kar Üretilmesi İçin Bir Makina Tasarımı, Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, 94.
- 4. Sarigecili, M.I., Akcali, I.D., 2018. Development of Constant Output–input Force Ratio in Slider–crank Mechanisms, Inverse Problems in Science and Engineering. (In Press) DOI: 10.1080/17415977.2018.1470625.
- 5. Franco, W., Iarussi, F., Quaglia, G., 2016. Human powered press for producing straw bales for use in construction during post-emergency conditions, Biosystems Engineering, 150, 170181. DOI: 10.1016/j.biosystemseng.2016.08. 007.
- 6. Halicioglu, R., Dulger, L.C., Bozdana, A.T., 2016. Structural Design and Analysis of a Servo Crank Press, Engineering Science and Technology, an International Journal, 19(4), 2060-2072. DOI: 10.1016/j.jestch.2016.08.008.
- 7. Erkaya, S., Su, Ş., Uzmay, İ., 2007. Dynamic Analysis of a Slider–crank Mechanism with Eccentric Connector and Planetary Gears, Mechanism and Machine Theory, 42(4), 393-408. DOI: 10.1016/j.mechmachtheory. 2006.04.011.
- 8. Ha, J.L., Fung, R.F., Chen, K.Y., Hsien, S.C., 2006. Dynamic Modeling and Identification of a Slider-crank Mechanism, Journal of Sound and Vibration, 289(4–5), 1019-1044. DOI: 10.1016/j.jsv.2005.03.011.
- 9. Huang, M.S., Chen, K.Y., Fung, R.F., 2010. Comparison Between Mathematical Modeling and Experimental Identification of a Spatial Slider–crank Mechanism, Applied Mathematical Modelling, 34(8), 2059-2073. DOI: 10.1016/j.apm.2009.10.018.
- 10. Fung, R.F., Chiang, C.L., Chen, S.J., 2009. Dynamic Modelling of an Intermittent Slider– crank Mechanism, Applied Mathematical Modelling, 33, 2411-2420. DOI: 10.1016/j.apm. 2008.07.004.
- 11. Silva R., de C., Nunes, M.A.A., Bento, J.P.M., da Costa, V.E., 2013. Modelling an Inverted Slider Crank Mechanism Considering Kinematic Analysis and Multibody Aspects, Proceedings of the XV International Symposium on Dynamic Problems of Mechanics (DINAME 2013), Buzios, RJ, Brazil, 1-10.
- 12. Yan, H.S., Chen, W.R., 2000. On the Output Motion Characteristics of Variable Input Speed Servo-controlled Slider-crank Mechanisms, Mechanism and Machine Theory, 35(4), 541-561. DOI: 10.1016/S0094-114X(99)00023 -3.
- 13. Lin, F.J., Fung, R.F., Lin, H.H., Hong, C.M., 2001. A Supervisory Fuzzy Neural Network Controller for Slider-crank Mechanism, Mechatronics, 11(2), 227-250. DOI: 10.1016/ S0957-4158(99)00070-7.
- 14. Wai, R.J., Lin, F.J., 1998. A Fuzzy Neural Network Controller with Adaptive Learning Rates for Nonlinear Slider-crank Mechanism, Neurocomputing, 20(1–3), 295-320. DOI: 10.1016/S0925-2312(98)00022-8.
- 15. Zhao, B., Dai, X.D., Zhang, Z.N., Xie, Y.B., 2016. A New Numerical Method for Piston Dynamics and Lubrication Analysis, Tribology International, 94, 395-408. DOI: 10.1016/j. triboint.2015.09.037.
- 16. Reis, V.L., Daniel, G.B., Cavalca, K.L., 2014. Dynamic Analysis of a Lubricated Planar Slider–crank Mechanism Considering Friction and Hertz Contact Effects, Mechanism and Machine Theory, 74, 257-273. DOI: 10.1016/ j.mechmachtheory.2013.11.009.
- 17. Wang, Y.M., Chen, C.H., 2012. The Dynamics of a Slider-crank Mechanism with a FourierSeries Based Axially Periodic Array NonHomogeneous Coupler, Journal of Sound and Vibration, 331(22), 4831-4847. DOI: 10.1016 /j.jsv.2012.05.025.
- 18. Akbari, S., Fallahi, F., Pirbodaghi, T., 2016. Dynamic Analysis and Controller Design for a Slider–crank Mechanism with Piezoelectric Actuators, Journal of Computational Design and Engineering, 3(4), 312-321. DOI: 10.1016/j.jcde.2016.05.002.
- 19. Hirschhorn, J., 1962. Kinematics and Dynamics of Plane Mechanisms (First ed.), McGraw-Hill New York.
- 20. Chapra, S.C., Canale, R.P., 2010. Numerical Methods for Engineers (Sixth ed.) McGrawHill, New York.