Araştırma Makalesi
BibTex RIS Kaynak Göster

Lineer Pnömatik Silindirlerin Sürtünme Parametrelerinin Değerlendirilmesi için Bir Test Düzeneğinin Geliştirilmesi

Yıl 2019, Cilt: 34 Sayı: 3, 131 - 142, 30.09.2019
https://doi.org/10.21605/cukurovaummfd.638088

Öz

Pnömatik silindirler havanın sıkışabilirliğinden ve silindir bloğunda meydana gelen yapışma-kayma olaylarından dolayı lineer olmayan özelliklere sahiptirler. Pnömatik silindirlerdeki sürtünme karakteristiği hassas kontrol işlemlerini olumsuz yönde etkileyen lineer olmayan ana özelliktir. Bu tahrik sistemlerini yüksek seviye kontrol uygulamalarında kullanabilmek için,  sürtünme kuvveti modellerinin geliştirilmesi gerekir. Pnömatik silindirlerin sürtünme parametreleri üretici kataloglarında belirtilmediğinden ve sadece analitik yollarla saptanamayacakları için bilinmeyen sürtünme parametrelerinin belirlenmesi gerekir. Bu sebepten dolayı, bu çalışmada, bir test düzeneği tasarlanmış ve pnömatik silindirlerin sürtünme parametrelerinin statik sürtünme kuvveti, Coulomb sürtünme kuvveti, Stribeck hızı ve viskoz sönümleme katsayısı formatında tahmin edilmesi için deneysel adımlar geliştirilmiştir.  

Kaynakça

  • 1. Wang, J., Wang, J., Daw, N., Wu, Q., 2004. Identification of Pneumatic Cylinder Friction Parameters Using Genetic Algorithms. IEEE/ASME Transactions on Mechatronics, 9(1), 100-107. 2. Andrghetto, P.L., Valdiero, A.C., Carlotto, L., 2006. Study of the Friciton Behaviour in Industrial Pneumatic Actuators. ABCM Symposium Series in Mechatronics, 2, 369-376.
  • 3. Kosari, H., Moosavian, S.A.A., 2015. Fricition Compensation in a Pneumatic Actuator Using Recursive Least Square Algorithm. 5th Australian Control Conference (AUCC), 5th-6th Nov., Gold Coast, Australia, 81-86.
  • 4. Lafmejani, A.S., Masouleh, M.T., Kalhor, A., 2016. An Experimental Study on Friciton Identifiacaiton of a Pneumatic Actuator and Dynamic Modelling of a Proportinal Valve. Proceedings of the 4th International Conference on Robotics and Mechatronics, October 26-28, 166-172. Tehran, Iran.
  • 5. Saleem, A., Wong, C., Pu, J., Moore, P., 2009. Mixed-reality environment for frictional parameters identification in servo-pneumatic system. Simulation Modelling Practice and Theory, 17(10), 1575-1586.
  • 6. Harnoy, A., Friedland, B., Cohn, S., 2008. Modelling and Measuring Friciton Effects. IEEE Control Systems Magazine. 28(6), 82-91.
  • 7. Haessig, D.A., Friedland, B., 1990. On the Modeling and Simulation of Friction. 1990 American Control Conference. doi:10.23919/ acc.1990.4790944.
  • 8. Olsson, H., Åström, K., Wit, C.C., Gäfvert, M., Lischinsky, P., 1998. Friction Models and Friction Compensation. European Journal of Control, 4(3), 176-195.
  • 9. Liu, Y.F., Li, J., Zhang, Z.M., Hu, X.H., Zhang, W.J., 2015. Experimental Comparison of Five Friction Models on the Same Test-bed of the Micro Stick-slip Motion System. Mechanical Sciences, 6(1), 15-28.
  • 10. Armstrong-Helouvry, B., 1993. Stick Slip and Control in Low-speed Motion. IEEE Transactions on Automatic Control, 38(10), 1483-1496. 11. Canudas de Wit, C., Olsson, H., Astrom, K., Lischinsky, P., 1995. A New Model for Control of Systems with Friction. IEEE Transactions on Automatic Control, 40(3), 419-425. doi:10.1109/9.376053.
  • 12. Saha, A., Wahi, P., Wiercigroch, M., Stefański, A., 2016. A Modified LuGre Friction Model for an Accurate Prediction of Friction Force in the Pure Sliding Regime. International Journal of Non-Linear Mechanics, 80, 122-131. doi:10.1016/j.ijnonlinmec.2015.08.013.
  • 13. Yanada, H., Sekikawa, Y., 2008. Modeling of Dynamic Behaviors of Friction. Mechatronics, 18(7), 330-339 doi:10.1016/j.mechatronics .2008.02.002.
  • 14. Dahl, P.R., 1968. A Solid Friction Model. doi:10.21236/ada041920.
  • 15. Dupont, P., Armstrong, B., Hayward, V., 2000. Elasto-plastic Friction Model: Contact Compliance and Stiction. Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334). doi:10.1109/acc. 2000.876665.
  • 16. Swevers, J., Al-Bender, F., Ganseman, C., Projogo, T., 2000. An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation. IEEE Transactions on Automatic Control, 45(4), 675-686. doi:10.1109/9.847103.
  • 17. Karnopp, D., 1985. Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems. Journal of Dynamic Systems, Measurement, and Control, 107(1), 100. doi:10.1115/1.3140698.
  • 18. Al-Bender, F., Lampaert, V., Swevers, J., 2005. The Generalized Maxwell-slip Model: A Novel Model for Friction Simulation and Compensation. IEEE Transactions on Automatic Control, 50(11), 1883-1887. doi:10.1109/tac.2005.858676.
  • 19. Schroeder, L.E., Singh, R., 1993. Experimental Study on Friciton in a Pneumatic Actuator at Constant Velocity. Journal of Dynamic Systems, Measurement and Control, 115, 575-577.
  • 20. Belforte, G., Mattiazzo, G., Mauro, S., Tokashiki, L.R., 2003. Measurement of Friction Force in Pneumatic Cylinders. Tribotest, 10(1), 33-48. doi:10.1002/ tt.3020100104.
  • 21. Dağdelen, M., Sarıgeçili, M.İ., 2019. Estimation of Friciton Parameters of Linear Pneumatic Cylinders. Submitted for publication in Journal of Engineering Sciences and Design.
  • 22. Tran, X.B., Yanada, H., 2013. Dynamic Friction Behaviors of Pneumatic Cylinders. Intelligent Control and Automation, 4(2), 180-190. doi:10.4236/ica.2013.42022.
  • 23. Ritcher, R.R.M., Valdiero, A.C., 2014. Friciton Dynamics Mathematical Modelling in Special Pneumatic Cylinder. ABCM Symposium Series in Mechatronics, 6, 800-808.

Development of a Test Apparatus for Estimation of Friction Parameters at Linear Pneumatic Cylinders

Yıl 2019, Cilt: 34 Sayı: 3, 131 - 142, 30.09.2019
https://doi.org/10.21605/cukurovaummfd.638088

Öz

Pneumatic cylinders possess non-linear characteristics due to the air-compressibility and stick-slip in cylinder barrel. Friction characteristics in pneumatic cylinders is one of the main non-linearity that negatively affects the precise control. To be able to use these actuator systems in high level control applications, their friction force models should be developed. Hence, unknown friction parameters should be estimated correctly since the friction parameters of pneumatic cylinders are not listed in the manufacturers’ catalogue and these parameters cannot be calculated by only analytical methods. For that reason, in this study, a test apparatus is designed and experimental procedures are developed for the estimation of the friction parameters of linear pneumatic cylinders as in the form of static friction force, Coulomb friction force, Stribeck velocity and viscous damping coefficient. 

Kaynakça

  • 1. Wang, J., Wang, J., Daw, N., Wu, Q., 2004. Identification of Pneumatic Cylinder Friction Parameters Using Genetic Algorithms. IEEE/ASME Transactions on Mechatronics, 9(1), 100-107. 2. Andrghetto, P.L., Valdiero, A.C., Carlotto, L., 2006. Study of the Friciton Behaviour in Industrial Pneumatic Actuators. ABCM Symposium Series in Mechatronics, 2, 369-376.
  • 3. Kosari, H., Moosavian, S.A.A., 2015. Fricition Compensation in a Pneumatic Actuator Using Recursive Least Square Algorithm. 5th Australian Control Conference (AUCC), 5th-6th Nov., Gold Coast, Australia, 81-86.
  • 4. Lafmejani, A.S., Masouleh, M.T., Kalhor, A., 2016. An Experimental Study on Friciton Identifiacaiton of a Pneumatic Actuator and Dynamic Modelling of a Proportinal Valve. Proceedings of the 4th International Conference on Robotics and Mechatronics, October 26-28, 166-172. Tehran, Iran.
  • 5. Saleem, A., Wong, C., Pu, J., Moore, P., 2009. Mixed-reality environment for frictional parameters identification in servo-pneumatic system. Simulation Modelling Practice and Theory, 17(10), 1575-1586.
  • 6. Harnoy, A., Friedland, B., Cohn, S., 2008. Modelling and Measuring Friciton Effects. IEEE Control Systems Magazine. 28(6), 82-91.
  • 7. Haessig, D.A., Friedland, B., 1990. On the Modeling and Simulation of Friction. 1990 American Control Conference. doi:10.23919/ acc.1990.4790944.
  • 8. Olsson, H., Åström, K., Wit, C.C., Gäfvert, M., Lischinsky, P., 1998. Friction Models and Friction Compensation. European Journal of Control, 4(3), 176-195.
  • 9. Liu, Y.F., Li, J., Zhang, Z.M., Hu, X.H., Zhang, W.J., 2015. Experimental Comparison of Five Friction Models on the Same Test-bed of the Micro Stick-slip Motion System. Mechanical Sciences, 6(1), 15-28.
  • 10. Armstrong-Helouvry, B., 1993. Stick Slip and Control in Low-speed Motion. IEEE Transactions on Automatic Control, 38(10), 1483-1496. 11. Canudas de Wit, C., Olsson, H., Astrom, K., Lischinsky, P., 1995. A New Model for Control of Systems with Friction. IEEE Transactions on Automatic Control, 40(3), 419-425. doi:10.1109/9.376053.
  • 12. Saha, A., Wahi, P., Wiercigroch, M., Stefański, A., 2016. A Modified LuGre Friction Model for an Accurate Prediction of Friction Force in the Pure Sliding Regime. International Journal of Non-Linear Mechanics, 80, 122-131. doi:10.1016/j.ijnonlinmec.2015.08.013.
  • 13. Yanada, H., Sekikawa, Y., 2008. Modeling of Dynamic Behaviors of Friction. Mechatronics, 18(7), 330-339 doi:10.1016/j.mechatronics .2008.02.002.
  • 14. Dahl, P.R., 1968. A Solid Friction Model. doi:10.21236/ada041920.
  • 15. Dupont, P., Armstrong, B., Hayward, V., 2000. Elasto-plastic Friction Model: Contact Compliance and Stiction. Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334). doi:10.1109/acc. 2000.876665.
  • 16. Swevers, J., Al-Bender, F., Ganseman, C., Projogo, T., 2000. An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation. IEEE Transactions on Automatic Control, 45(4), 675-686. doi:10.1109/9.847103.
  • 17. Karnopp, D., 1985. Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems. Journal of Dynamic Systems, Measurement, and Control, 107(1), 100. doi:10.1115/1.3140698.
  • 18. Al-Bender, F., Lampaert, V., Swevers, J., 2005. The Generalized Maxwell-slip Model: A Novel Model for Friction Simulation and Compensation. IEEE Transactions on Automatic Control, 50(11), 1883-1887. doi:10.1109/tac.2005.858676.
  • 19. Schroeder, L.E., Singh, R., 1993. Experimental Study on Friciton in a Pneumatic Actuator at Constant Velocity. Journal of Dynamic Systems, Measurement and Control, 115, 575-577.
  • 20. Belforte, G., Mattiazzo, G., Mauro, S., Tokashiki, L.R., 2003. Measurement of Friction Force in Pneumatic Cylinders. Tribotest, 10(1), 33-48. doi:10.1002/ tt.3020100104.
  • 21. Dağdelen, M., Sarıgeçili, M.İ., 2019. Estimation of Friciton Parameters of Linear Pneumatic Cylinders. Submitted for publication in Journal of Engineering Sciences and Design.
  • 22. Tran, X.B., Yanada, H., 2013. Dynamic Friction Behaviors of Pneumatic Cylinders. Intelligent Control and Automation, 4(2), 180-190. doi:10.4236/ica.2013.42022.
  • 23. Ritcher, R.R.M., Valdiero, A.C., 2014. Friciton Dynamics Mathematical Modelling in Special Pneumatic Cylinder. ABCM Symposium Series in Mechatronics, 6, 800-808.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Mustafa Dağdelen

Mehmet İlteriş Sarıgeçili Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 3

Kaynak Göster

APA Dağdelen, M., & Sarıgeçili, M. İ. (2019). Development of a Test Apparatus for Estimation of Friction Parameters at Linear Pneumatic Cylinders. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(3), 131-142. https://doi.org/10.21605/cukurovaummfd.638088
AMA Dağdelen M, Sarıgeçili Mİ. Development of a Test Apparatus for Estimation of Friction Parameters at Linear Pneumatic Cylinders. cukurovaummfd. Eylül 2019;34(3):131-142. doi:10.21605/cukurovaummfd.638088
Chicago Dağdelen, Mustafa, ve Mehmet İlteriş Sarıgeçili. “Development of a Test Apparatus for Estimation of Friction Parameters at Linear Pneumatic Cylinders”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34, sy. 3 (Eylül 2019): 131-42. https://doi.org/10.21605/cukurovaummfd.638088.
EndNote Dağdelen M, Sarıgeçili Mİ (01 Eylül 2019) Development of a Test Apparatus for Estimation of Friction Parameters at Linear Pneumatic Cylinders. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 3 131–142.
IEEE M. Dağdelen ve M. İ. Sarıgeçili, “Development of a Test Apparatus for Estimation of Friction Parameters at Linear Pneumatic Cylinders”, cukurovaummfd, c. 34, sy. 3, ss. 131–142, 2019, doi: 10.21605/cukurovaummfd.638088.
ISNAD Dağdelen, Mustafa - Sarıgeçili, Mehmet İlteriş. “Development of a Test Apparatus for Estimation of Friction Parameters at Linear Pneumatic Cylinders”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34/3 (Eylül 2019), 131-142. https://doi.org/10.21605/cukurovaummfd.638088.
JAMA Dağdelen M, Sarıgeçili Mİ. Development of a Test Apparatus for Estimation of Friction Parameters at Linear Pneumatic Cylinders. cukurovaummfd. 2019;34:131–142.
MLA Dağdelen, Mustafa ve Mehmet İlteriş Sarıgeçili. “Development of a Test Apparatus for Estimation of Friction Parameters at Linear Pneumatic Cylinders”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 34, sy. 3, 2019, ss. 131-42, doi:10.21605/cukurovaummfd.638088.
Vancouver Dağdelen M, Sarıgeçili Mİ. Development of a Test Apparatus for Estimation of Friction Parameters at Linear Pneumatic Cylinders. cukurovaummfd. 2019;34(3):131-42.