Araştırma Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

Modeling Kucuk Menderes Watershed with SWAT

Yıl 2019, Cilt 34, Sayı 4, 55 - 70, 31.12.2019
https://doi.org/10.21605/cukurovaummfd.702065

Öz

Water resources in Kucuk Menderes Watershed have been adversely affected by anthropogenic activities and climate change. Increasing population and uncontrolled water uses have transformed the watershed into a water-stressed watershed. Modeling studies in water resources are required to solve these problems in the watershed. In this study, a hydrological model for the watershed was established using SWAT (Soil and Water Assessment Tool). The model calibration and sensitivity analysis were performed by SWAT-CUP (SWAT-Calibration Uncertainty Programs) using Sequential Uncertainty Fitting (SUFI-2) method. The model was mostly sensitive to CN2, SOL_BD (layer#), RCHRG_DP and SOL_K (layer#) parameters. The performance of the model was evaluated with P-factor, R-factor and objective functions. P-factor values were in the range of 61-80%, meaning that the monitoring data were matched by the model within this range. According to the objective functions, the model performance was evaluated as satisfactory. The results of this study could serve as a base for a wide range of studies in the watershed such as effects of climate change, the effectiveness of Best Management Practices (BMPs) on water resources and water quality modeling.

Kaynakça

  • 1. Daniel, E.B., Camp, J.V., LeBoeuf, E.J., Penrod, J.R., Dobbins, J.P., Abkowitz, M.D., 2011. Watershed Modeling and its Applications: A State-of-the-Art Review, The Open Hydrology Journal, 5(1), 26-50.
  • 2. Singh, V.P., Frevert, D.K., 2010. Watershed Models. NY: CRC Press. 28, 678-678.
  • 3. Arceo, M.G.A.S., Cruz, R.V.O., Tiburan Jr, C.L., Balatibat, J.B., 2018. Modeling the Hydrologic Responses to Land Cover and Climate Changes of Selected Watersheds in the Philippines Using Soil and Water Assessment Tool (SWAT) Model, DLSU Business & Economics Review, 28, 84-101.
  • 4. Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area Hydrologic Modeling and Assessment Part I: Model Development “Basin Scale Model Called SWAT (Soil and Water Speed and Storage, Advanced Software Debugging Policy to Meet the Needs, and the Management to the Tank Model).”, American Water Resources Association, 34, 73-89.
  • 5. USDA ve Texas A. M., U. SWAT | Soil & Water Assessment Tool. Available from: https://swat.tamu.edu/. 16, 11, 2018.
  • 6. Akiner, M.E., Akkoyunlu, A., 2012. Modeling and Forecasting River Flow Rate from the Melen Watershed, Journal of Hydrology, Turkey, 456-457:121-129.
  • 7. Başkan, O., Özcan, Z., Düzgün, H.Ş., Kentel, E., Alp, E., 2017. A Pollution Fate and Transport Model Application in a Semi-arid Region: Is Some Number Better Than no Number?, Science of The Total Environment, 595: 425-440.
  • 8. Bucak, T., Trolle, D., Andersen, H.E., Thodsen, H., Erdoğan, Ş., Levi, E.E., Filiz, N., Jeppesen, E., Beklioğlu, M., 2017. Future Water Availability in the Largest Freshwater Mediterranean Lake is at Great Risk as Evidenced from Simulations with the SWAT Model, Science of The Total Environment, 581-582: 413-425.
  • 9. Bucak, T., Trolle, D., Tavşanoğlu, N., Akıroğlu, A.İ., Zen, A., Jeppesen, E., Beklioğlu, M., 2018. Modeling the Effects of Climatic and Land Use Changes on Phytoplankton and Water Quality of the Largest Turkish Freshwater Lake: Lake Beyşehir, Science of The Total Environment, 621(802–816 Contents): 802-816.
  • 10. Bulut, E., Aksoy, A., 2008. Impact of Fertilizer Usage on Phosphorus Loads to Lake Uluabat, Desalination, 226(1-3), 289-297.
  • 11. Coppens, J., Zen, A., Tavşanoğlu, N., Erdoğan, Ş., Levi, E.E., Yozgatlıgil, C., Jeppesen, E., Beklioğlu, M., 2016. Impact of Alternating Wet and Dry Periods on Long-term Seasonal Phosphorus and Nitrogen Budgets of Two Shallow Mediterranean Lakes, Science of the Total Environment, 563-564: 456-467.
  • 12. Cuceloglu, G., Abbaspour, K.C., Ozturk, I., 2017. Assessing the Water-Resources Potential of Istanbul by Using a Soil and Water Assessment Tool (SWAT) Hydrological Model, Water, 9(10), 814.
  • 13. Duru, U., Wohl, E., Ahmadi, M., 2017. Factors Controlling Sediment Load in the Central Anatolia Region of Turkey: Ankara River Basin, Environmental Management, 59(5), 826-841.
  • 14. Duru, U., Arabi, M., Wohl, E.E., 2018. Modeling Stream Flow and Sediment Yield Using the SWAT Model: A Case Study of Ankara River basin, Turkey, Physical Geography, 39(3), 264-289.
  • 15. El-Sadek, A., Irvem, A., 2014. Evaluating the Impact of Land Use Uncertainty on the Simulated Streamflow and Sediment Yield of the Seyhan River Basin Using the SWAT Model, Turkish Journal of Agriculture and Forestry, 38(4), 515-530.
  • 16. Irvem, A., El-Sadek, A., 2018. Evaluation of Streamflow Simulation By SWAT Model for The Seyhan River Basin Seyhan, Çukurova J. Agric. Food Sci., 33(2), 99-110.
  • 17. Ertürk, A., Ekdal, A., Gürel, M., Karakaya, N., Guzel, C., Gönenç, E., 2014. Evaluating the Impact of Climate Change on Groundwater Resources in a Small Mediterranean Watershed, Science of the Total Environment, 499, 437-447.
  • 18. Ertürk, A., Ekdal, A., Gurel, M., Karakaya, N., Cuceloglu, G., Gönenç, E., 2017. Model-based Assessment of Groundwater Vulnerability for the Dalyan Region of Southwestern Mediterranean Turkey, Regional Environmental Change, 17(4), 1193-1203.
  • 19. Güngör, Ö., Göncü, S., 2013. Application of the Soil and Water Assessment Tool Model on the Lower Porsuk Stream Watershed, Hydrological Processes, 27(3), 453-466.
  • 20. Gungor, K., Karakaya, N., Evrendilek, F., Akgul, S., Baskan, O., Cebel, H., Farhoud, H.J., Turkecan, O., Yasar, S., Gumus, O., 2016. Spatiotemporal Modeling of Watershed Nutrient Transport Dynamics: Implications for Eutrophication Abatement, Ecological Informatics, 34, 52-69.
  • 21. Özcan, Z., Kentel, E., Alp, E., 2017. Evaluation of the Best Management Practices in a Semi-arid Region With High Agricultural Activity, Agricultural Water Management, 194, 160-171.
  • 22. Tufekcioglu, M., Yavuz, M., Zaimes, G.N., Dinc, M., Koutalakis, P., Tufekcioglu, A., 2017. Application of Soil Water Assessment Tool (SWAT) to Suppress Wildfire at Bayam Forest, Turkey, Journal of Environmental Biology, 38(5), 719-726.
  • 23. Şahin, Y., Baba, A., Tayfur, G., 2018. Küçük Menderes Havzası Su Kaynaklarının Sürdürülebilirliği, DÜMF Mühendislik Dergisi, 2, 955-962.
  • 24. Akyüz, Y., Atış, E., 2018. Küçük Menderes Havzasında İklim Değişikliğinin Olası Etkileri ve Üreticilerin Konuya İlişkin Farkındalıkları, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21, 109-115.
  • 25. Muluk, Ç.B., Kurt, B., Turak, A., Türker, A., Çalışkan, M.A., Balkız, Ö., Gümrükçü, S., Sarıgül, G., Zeydanlı, U., 2013. Turkiye’de Suyun Durumu ve Su Yönetiminde Yeni Yaklaşımlar: Çevresel Perspektif: iş Dünyası ve Sürdürülebilir Kalkınma Derneği-Doğa Koruma Merkezi.
  • 26. S.Y.G.M., 2019. Küçük Menderes Havzası Taslak Nihai Nehir Havza Yönetim Planı, Ankara: Tarım ve Orman Bakanlığı.
  • 27. Ç.Y.G.M., 2016. Küçük Menderes Havza Kı̇rlı̇lı̇k Önleme Eylem PlanI, Ankara: Çevre ve Şehircilik Bakanlığı.
  • 28. Çivi, A., Akgündüz, E., Kalaycı, K., İnan, Ç., Sarıca, E., Toru, E., 2009. Corine (Coordination of Information on the Environment) Projesi, TMMOB Coğrafi Bilgi Sistemleri Kongresi, TMMOB.
  • 29. FAO ve UNESCO. Soil Map of the World (Europe). Available from: http://www.fao. org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/. 16, 04, 2003.
  • 30. CFSR. Global Weather Data for SWAT. Available from: https://globalweather.tamu. edu/. 17, 04, 2019.
  • 31. Dile, Y.T., Srinivasan, R., 2014. Evaluation of CFSR Climate Data for Hydrologic Prediction in Data-scarce Watersheds: An Application in the Blue Nile River Basin, Journal of the American Water Resources Association, 50(5), 1226-1241.
  • 32. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., 2012. SWAT: Model Use, Calibration, and Validation, Transactions of the ASABE, 55(4), 1509-1522.
  • 33. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2011. Soil and Water Assessment Tool Theoretical Documentation Version 2009: Texas Water Resources Institute Technical Report.
  • 34. Mockus, V., 2004. Estimation of Direct Runoff from Storm Rainfall, in Hydrology National Engineering Handbook, W.J. Gburek, et al., Editors. United States Department of Agriculture: Washington DC, USA, 79.
  • 35. Heber Green, W., Ampt, G.A., 1911. Studies on Soil Phyics, The Journal of Agricultural Science, 4(1), 1-24.
  • 36. Howell, T.A., Evett, S., 2004. The Penman-Monteith Method, USDA-Agricultural Research Service Conservation& Production Research Laboratory, 806.
  • 37. Priestley, C.H.B., Taylor, R.J., 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters, Monthly Weather Review, 100(2), 81-92.
  • 38. Winchell, M., Srinivasan, R.A., 2013.ArcSWAT Interface for SWAT2012: User’s Guide, Texas Agricultural Experiment Station and United States Department of Agriculture, Temple, TX.: 464.
  • 39. Google, Google Earth. 2001: USA.
  • 40. Abbaspour, K.C., 2011. SWAT-CUP4: SWAT Calibration and Uncertainty Programs-a User Manual, Swiss Federal Institute of Aquatic Science and Technology, Eawag: 106.
  • 41. Abbaspour, K.C., Johnson, C.A., Van Genuchten, M.T., 2010. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure, Vadose Zone Journal, 3(4), 1340-1352.
  • 42. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., 2012. SWAT: Model Use, Calibration, and Validation, Transactions of the ASABE, 55(4), 1509-1522.
  • 43. Yang, J., Reichert, P., Abbaspour, K.C., Xia, J., Yang, H., 2008. Comparing Uncertainty Analysis Techniques for a SWAT Application to The Chaohe Basin in China, Journal of Hydrology, 358(1-2), 1-23.
  • 44. Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., Srinivasan, R., 2007. Modelling Hydrology and Water Quality in the Pre-alpine/alpine Thur Watershed Using SWAT, Journal of Hydrology, 333(2-4), 413-430.
  • 45. Abbaspour, K.C. SWAT-CUP4: SWAT Calibration and Uncertainty Programs–A User Manual. Available from: http://swat.tamu.edu /media/114860/usermanual\_swatcup.pdf. 20, 11, 2011.
  • 46. Kamali, B., Abbaspour, K.C., Yang, H., 2017. Assessing the Uncertainty of Multiple Input Datasets in the Prediction of Water Resource Components, Water (Switzerland), 9(9).
  • 47. Kouchi, D.H., Esmaili, K., Faridhosseini, A., Sanaeinejad, S.H., Khalili, D., Abbaspour, K.C., 2017. Sensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization Algorithms, Water (Switzerland), 9(6), 1-16.
  • 48. Moriasi, D.N., Arnold, J.G.A., 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, Transactions of the ASABE, 50(3), 885-900.
  • 49. Thiemig, V., Rojas, R., Zambrano-Bigiarini, M.A., 2013. Hydrological Evaluation of Satellite-based Rainfall Estimates Over the Volta and Baro-Akobo Basin, Journal of Hydrology, 499, 324-338.
  • 50. Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Kløve, B., 2015. A Continental-scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-resolution Large-scale SWAT Model, Journal of Hydrology, 524, 733-752.

Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi

Yıl 2019, Cilt 34, Sayı 4, 55 - 70, 31.12.2019
https://doi.org/10.21605/cukurovaummfd.702065

Öz

Antropojenik aktiviteler ve iklim değişikliği Küçük Menderes Havzası’nın su kaynaklarını olumsuz bir şekilde etkilemektedir. Nüfus artışı ve kontrolsüz su kullanımları havzayı su fakiri haline getirmiştir. Havzadaki problemlere çözüm sunabilecek modelleme çalışmaları gereklidir. Bu çalışmada, SWAT (Toprak ve Su Değerlendirme Aracı) yazılımı kullanılarak Küçük Menderes Alt Havzası için hidrolojik model oluşturulmuştur. Modelin kalibrasyonu ve duyarlılık analizi SUFI-2 (Sıralı Belirsizlik Uygunluğu) metodu kullanılarak SWAT-CUP (SWAT-Kalibrasyon Belirsizlik Programları) ile yapılmıştır. Model en çok CN2, SOL_BD (katman#), RCHRG_DP ve SOL_K (katman#) parametrelerine duyarlı olmuştur. Modelin performansı P-faktör, R-faktör ve objektif fonksiyonlarla değerlendirilmiştir. P-faktör değeri %61 ile %80 aralığında izlemeleri eşlemiştir. Objektif fonksiyonlara göre model performansının yeterli seviyede olduğu değerlendirilmiştir. Bu çalışma, havzada iklim değişikliğinin ve en iyi yönetim uygulamalarının etkisini anlamak için yapılan çalışmalar için ve su kalitesi modellemesi çalışmaları için bir altlık oluşturmaktadır.

Kaynakça

  • 1. Daniel, E.B., Camp, J.V., LeBoeuf, E.J., Penrod, J.R., Dobbins, J.P., Abkowitz, M.D., 2011. Watershed Modeling and its Applications: A State-of-the-Art Review, The Open Hydrology Journal, 5(1), 26-50.
  • 2. Singh, V.P., Frevert, D.K., 2010. Watershed Models. NY: CRC Press. 28, 678-678.
  • 3. Arceo, M.G.A.S., Cruz, R.V.O., Tiburan Jr, C.L., Balatibat, J.B., 2018. Modeling the Hydrologic Responses to Land Cover and Climate Changes of Selected Watersheds in the Philippines Using Soil and Water Assessment Tool (SWAT) Model, DLSU Business & Economics Review, 28, 84-101.
  • 4. Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area Hydrologic Modeling and Assessment Part I: Model Development “Basin Scale Model Called SWAT (Soil and Water Speed and Storage, Advanced Software Debugging Policy to Meet the Needs, and the Management to the Tank Model).”, American Water Resources Association, 34, 73-89.
  • 5. USDA ve Texas A. M., U. SWAT | Soil & Water Assessment Tool. Available from: https://swat.tamu.edu/. 16, 11, 2018.
  • 6. Akiner, M.E., Akkoyunlu, A., 2012. Modeling and Forecasting River Flow Rate from the Melen Watershed, Journal of Hydrology, Turkey, 456-457:121-129.
  • 7. Başkan, O., Özcan, Z., Düzgün, H.Ş., Kentel, E., Alp, E., 2017. A Pollution Fate and Transport Model Application in a Semi-arid Region: Is Some Number Better Than no Number?, Science of The Total Environment, 595: 425-440.
  • 8. Bucak, T., Trolle, D., Andersen, H.E., Thodsen, H., Erdoğan, Ş., Levi, E.E., Filiz, N., Jeppesen, E., Beklioğlu, M., 2017. Future Water Availability in the Largest Freshwater Mediterranean Lake is at Great Risk as Evidenced from Simulations with the SWAT Model, Science of The Total Environment, 581-582: 413-425.
  • 9. Bucak, T., Trolle, D., Tavşanoğlu, N., Akıroğlu, A.İ., Zen, A., Jeppesen, E., Beklioğlu, M., 2018. Modeling the Effects of Climatic and Land Use Changes on Phytoplankton and Water Quality of the Largest Turkish Freshwater Lake: Lake Beyşehir, Science of The Total Environment, 621(802–816 Contents): 802-816.
  • 10. Bulut, E., Aksoy, A., 2008. Impact of Fertilizer Usage on Phosphorus Loads to Lake Uluabat, Desalination, 226(1-3), 289-297.
  • 11. Coppens, J., Zen, A., Tavşanoğlu, N., Erdoğan, Ş., Levi, E.E., Yozgatlıgil, C., Jeppesen, E., Beklioğlu, M., 2016. Impact of Alternating Wet and Dry Periods on Long-term Seasonal Phosphorus and Nitrogen Budgets of Two Shallow Mediterranean Lakes, Science of the Total Environment, 563-564: 456-467.
  • 12. Cuceloglu, G., Abbaspour, K.C., Ozturk, I., 2017. Assessing the Water-Resources Potential of Istanbul by Using a Soil and Water Assessment Tool (SWAT) Hydrological Model, Water, 9(10), 814.
  • 13. Duru, U., Wohl, E., Ahmadi, M., 2017. Factors Controlling Sediment Load in the Central Anatolia Region of Turkey: Ankara River Basin, Environmental Management, 59(5), 826-841.
  • 14. Duru, U., Arabi, M., Wohl, E.E., 2018. Modeling Stream Flow and Sediment Yield Using the SWAT Model: A Case Study of Ankara River basin, Turkey, Physical Geography, 39(3), 264-289.
  • 15. El-Sadek, A., Irvem, A., 2014. Evaluating the Impact of Land Use Uncertainty on the Simulated Streamflow and Sediment Yield of the Seyhan River Basin Using the SWAT Model, Turkish Journal of Agriculture and Forestry, 38(4), 515-530.
  • 16. Irvem, A., El-Sadek, A., 2018. Evaluation of Streamflow Simulation By SWAT Model for The Seyhan River Basin Seyhan, Çukurova J. Agric. Food Sci., 33(2), 99-110.
  • 17. Ertürk, A., Ekdal, A., Gürel, M., Karakaya, N., Guzel, C., Gönenç, E., 2014. Evaluating the Impact of Climate Change on Groundwater Resources in a Small Mediterranean Watershed, Science of the Total Environment, 499, 437-447.
  • 18. Ertürk, A., Ekdal, A., Gurel, M., Karakaya, N., Cuceloglu, G., Gönenç, E., 2017. Model-based Assessment of Groundwater Vulnerability for the Dalyan Region of Southwestern Mediterranean Turkey, Regional Environmental Change, 17(4), 1193-1203.
  • 19. Güngör, Ö., Göncü, S., 2013. Application of the Soil and Water Assessment Tool Model on the Lower Porsuk Stream Watershed, Hydrological Processes, 27(3), 453-466.
  • 20. Gungor, K., Karakaya, N., Evrendilek, F., Akgul, S., Baskan, O., Cebel, H., Farhoud, H.J., Turkecan, O., Yasar, S., Gumus, O., 2016. Spatiotemporal Modeling of Watershed Nutrient Transport Dynamics: Implications for Eutrophication Abatement, Ecological Informatics, 34, 52-69.
  • 21. Özcan, Z., Kentel, E., Alp, E., 2017. Evaluation of the Best Management Practices in a Semi-arid Region With High Agricultural Activity, Agricultural Water Management, 194, 160-171.
  • 22. Tufekcioglu, M., Yavuz, M., Zaimes, G.N., Dinc, M., Koutalakis, P., Tufekcioglu, A., 2017. Application of Soil Water Assessment Tool (SWAT) to Suppress Wildfire at Bayam Forest, Turkey, Journal of Environmental Biology, 38(5), 719-726.
  • 23. Şahin, Y., Baba, A., Tayfur, G., 2018. Küçük Menderes Havzası Su Kaynaklarının Sürdürülebilirliği, DÜMF Mühendislik Dergisi, 2, 955-962.
  • 24. Akyüz, Y., Atış, E., 2018. Küçük Menderes Havzasında İklim Değişikliğinin Olası Etkileri ve Üreticilerin Konuya İlişkin Farkındalıkları, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21, 109-115.
  • 25. Muluk, Ç.B., Kurt, B., Turak, A., Türker, A., Çalışkan, M.A., Balkız, Ö., Gümrükçü, S., Sarıgül, G., Zeydanlı, U., 2013. Turkiye’de Suyun Durumu ve Su Yönetiminde Yeni Yaklaşımlar: Çevresel Perspektif: iş Dünyası ve Sürdürülebilir Kalkınma Derneği-Doğa Koruma Merkezi.
  • 26. S.Y.G.M., 2019. Küçük Menderes Havzası Taslak Nihai Nehir Havza Yönetim Planı, Ankara: Tarım ve Orman Bakanlığı.
  • 27. Ç.Y.G.M., 2016. Küçük Menderes Havza Kı̇rlı̇lı̇k Önleme Eylem PlanI, Ankara: Çevre ve Şehircilik Bakanlığı.
  • 28. Çivi, A., Akgündüz, E., Kalaycı, K., İnan, Ç., Sarıca, E., Toru, E., 2009. Corine (Coordination of Information on the Environment) Projesi, TMMOB Coğrafi Bilgi Sistemleri Kongresi, TMMOB.
  • 29. FAO ve UNESCO. Soil Map of the World (Europe). Available from: http://www.fao. org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/. 16, 04, 2003.
  • 30. CFSR. Global Weather Data for SWAT. Available from: https://globalweather.tamu. edu/. 17, 04, 2019.
  • 31. Dile, Y.T., Srinivasan, R., 2014. Evaluation of CFSR Climate Data for Hydrologic Prediction in Data-scarce Watersheds: An Application in the Blue Nile River Basin, Journal of the American Water Resources Association, 50(5), 1226-1241.
  • 32. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., 2012. SWAT: Model Use, Calibration, and Validation, Transactions of the ASABE, 55(4), 1509-1522.
  • 33. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2011. Soil and Water Assessment Tool Theoretical Documentation Version 2009: Texas Water Resources Institute Technical Report.
  • 34. Mockus, V., 2004. Estimation of Direct Runoff from Storm Rainfall, in Hydrology National Engineering Handbook, W.J. Gburek, et al., Editors. United States Department of Agriculture: Washington DC, USA, 79.
  • 35. Heber Green, W., Ampt, G.A., 1911. Studies on Soil Phyics, The Journal of Agricultural Science, 4(1), 1-24.
  • 36. Howell, T.A., Evett, S., 2004. The Penman-Monteith Method, USDA-Agricultural Research Service Conservation& Production Research Laboratory, 806.
  • 37. Priestley, C.H.B., Taylor, R.J., 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters, Monthly Weather Review, 100(2), 81-92.
  • 38. Winchell, M., Srinivasan, R.A., 2013.ArcSWAT Interface for SWAT2012: User’s Guide, Texas Agricultural Experiment Station and United States Department of Agriculture, Temple, TX.: 464.
  • 39. Google, Google Earth. 2001: USA.
  • 40. Abbaspour, K.C., 2011. SWAT-CUP4: SWAT Calibration and Uncertainty Programs-a User Manual, Swiss Federal Institute of Aquatic Science and Technology, Eawag: 106.
  • 41. Abbaspour, K.C., Johnson, C.A., Van Genuchten, M.T., 2010. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure, Vadose Zone Journal, 3(4), 1340-1352.
  • 42. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., 2012. SWAT: Model Use, Calibration, and Validation, Transactions of the ASABE, 55(4), 1509-1522.
  • 43. Yang, J., Reichert, P., Abbaspour, K.C., Xia, J., Yang, H., 2008. Comparing Uncertainty Analysis Techniques for a SWAT Application to The Chaohe Basin in China, Journal of Hydrology, 358(1-2), 1-23.
  • 44. Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., Srinivasan, R., 2007. Modelling Hydrology and Water Quality in the Pre-alpine/alpine Thur Watershed Using SWAT, Journal of Hydrology, 333(2-4), 413-430.
  • 45. Abbaspour, K.C. SWAT-CUP4: SWAT Calibration and Uncertainty Programs–A User Manual. Available from: http://swat.tamu.edu /media/114860/usermanual\_swatcup.pdf. 20, 11, 2011.
  • 46. Kamali, B., Abbaspour, K.C., Yang, H., 2017. Assessing the Uncertainty of Multiple Input Datasets in the Prediction of Water Resource Components, Water (Switzerland), 9(9).
  • 47. Kouchi, D.H., Esmaili, K., Faridhosseini, A., Sanaeinejad, S.H., Khalili, D., Abbaspour, K.C., 2017. Sensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization Algorithms, Water (Switzerland), 9(6), 1-16.
  • 48. Moriasi, D.N., Arnold, J.G.A., 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, Transactions of the ASABE, 50(3), 885-900.
  • 49. Thiemig, V., Rojas, R., Zambrano-Bigiarini, M.A., 2013. Hydrological Evaluation of Satellite-based Rainfall Estimates Over the Volta and Baro-Akobo Basin, Journal of Hydrology, 499, 324-338.
  • 50. Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Kløve, B., 2015. A Continental-scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-resolution Large-scale SWAT Model, Journal of Hydrology, 524, 733-752.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Ortak Disiplinler
Bölüm Makaleler
Yazarlar

Mohammad Matin SADDIQI Bu kişi benim
İstanbul Teknik Üniversitesi, Çevre Mühendisliği Bölümü
Türkiye


Mahmut Ekrem KARPUZCU Bu kişi benim (Sorumlu Yazar)
İstanbul Teknik Üniversitesi, Çevre Mühendisliği Bölümü
Türkiye

Yayımlanma Tarihi 31 Aralık 2019
Yayınlandığı Sayı Yıl 2019, Cilt 34, Sayı 4

Kaynak Göster

Bibtex @araştırma makalesi { cukurovaummfd702065, journal = {Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi}, issn = {1019-1011}, eissn = {2564-7520}, address = {Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi Yayın Kurulu Başkanlığı 01330 ADANA}, publisher = {Çukurova Üniversitesi}, year = {2019}, volume = {34}, number = {4}, pages = {55 - 70}, doi = {10.21605/cukurovaummfd.702065}, title = {Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi}, key = {cite}, author = {Saddıqı, Mohammad Matin and Karpuzcu, Mahmut Ekrem} }
APA Saddıqı, M. M. & Karpuzcu, M. E. (2019). Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi . Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi , 34 (4) , 55-70 . DOI: 10.21605/cukurovaummfd.702065
MLA Saddıqı, M. M. , Karpuzcu, M. E. "Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi" . Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 (2019 ): 55-70 <https://dergipark.org.tr/tr/pub/cukurovaummfd/issue/53277/702065>
Chicago Saddıqı, M. M. , Karpuzcu, M. E. "Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi". Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 (2019 ): 55-70
RIS TY - JOUR T1 - Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi AU - Mohammad Matin Saddıqı , Mahmut Ekrem Karpuzcu Y1 - 2019 PY - 2019 N1 - doi: 10.21605/cukurovaummfd.702065 DO - 10.21605/cukurovaummfd.702065 T2 - Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi JF - Journal JO - JOR SP - 55 EP - 70 VL - 34 IS - 4 SN - 1019-1011-2564-7520 M3 - doi: 10.21605/cukurovaummfd.702065 UR - https://doi.org/10.21605/cukurovaummfd.702065 Y2 - 2019 ER -
EndNote %0 Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi %A Mohammad Matin Saddıqı , Mahmut Ekrem Karpuzcu %T Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi %D 2019 %J Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi %P 1019-1011-2564-7520 %V 34 %N 4 %R doi: 10.21605/cukurovaummfd.702065 %U 10.21605/cukurovaummfd.702065
ISNAD Saddıqı, Mohammad Matin , Karpuzcu, Mahmut Ekrem . "Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi". Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 / 4 (Aralık 2019): 55-70 . https://doi.org/10.21605/cukurovaummfd.702065
AMA Saddıqı M. M. , Karpuzcu M. E. Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi. cukurovaummfd. 2019; 34(4): 55-70.
Vancouver Saddıqı M. M. , Karpuzcu M. E. Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi. 2019; 34(4): 55-70.
IEEE M. M. Saddıqı ve M. E. Karpuzcu , "Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi", Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 34, sayı. 4, ss. 55-70, Ara. 2019, doi:10.21605/cukurovaummfd.702065