Araştırma Makalesi
BibTex RIS Kaynak Göster

İğne Çapı ve Besleme Hızının Elektro Çekim Tekniğiyle Üretilmiş Poliakrilonitril Nanoliflerinin Morfolojisine Etkisi

Yıl 2019, Cilt: 34 Sayı: 4, 163 - 170, 31.12.2019
https://doi.org/10.21605/cukurovaummfd.704171

Öz

Elektro çekim tekniği, sahip olduğu avantajlar sayesinde nanolif üretiminde en çok kullanılan ve araştırılan yöntemdir. Üretilen nanolif morfolojisi üzerinde etkili olan elektro çekim parametrelerinde, bazı parametreler (viskozite, yüzey gerilimi vb.) birinci dereceden önemliyken bazıları (voltaj, çözelti besleme hızı vb.) da ikinci derece öneme sahiptir. Çeşitli polimerler için özellikle iğne çapı ve ortalama nanolif çapı arasında birbirinden farklı ilişkilerin gözlemlendiği tespit edilmiştir. Bu çalışmada, poliakrilonitril (PAN) polimeri için dört farklı iğne çapı ve dört farklı çözelti besleme hızı kullanılarak elektro çekim tekniğiyle üretilen nanoliflerin morfolojisi incelenmiştir. Üretilen nanoliflerin taramalı elektron mikroskobu (SEM) görüntüleri alınarak, bir görüntü analiz programı yardımıyla ortalama nanolif çapları ve varyasyonları ölçülmüştür. Sonuç olarak iğne çapındaki ve çözelti besleme hızındaki artışın ortalama nanolif çaplarında artışa neden olduğu görülmüştür. Bununla beraber kalın iğnelerde daha düşük nanolif çap varyasyonu elde edilmiştir. Özellikle 60 µL/min besleme hızı için iğne çapı artışının boncuklanmayı artırdığı gözlemlenmiştir.

Kaynakça

  • 1. Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., 2003. A Review on Polymer Nanofibers by Electrospinning and their Applications in Nanocomposites, Composites Science and Technology, 63(15), 2223-2253.
  • 2. Gibson, P.W., Lee, C., Ko, F., Reneker, D., 2007. Application of Nanofiber Technology to Nonwoven Thermal Insulation, Journal of Engineered Fibers and Fabrics, 2(2), 32-40.
  • 3. Rutledge, G.C., Fridrikh, S.V., 2007. Formation of Fibers by Electrospinning, Advanced Drug Delivery Reviews, 59(14), 1384-1391.
  • 4. Baumgarten, P.K., 1971. Electrostatic Spinning of Acrylic Microfibers, Journal of Colloid and Interface Science, 36(1), 71-79.
  • 5. Doshi, J., Reneker, D.H., 1995. Electrospinning Process and Applications of Electrospun Fibers, Journal of Electrostatics, 35(2-3), 151-160.
  • 6. Formhals, A. 194. US Patent, 1, 975 504.
  • 7. Sawhney, A.P.S., Condon, B., Singh, K.V., Pang, S.S., Li, G., Hui, D., 2008. Modern Applications of Nanotechnology in Textiles, Textile Research Journal, 78(8), 731-739.
  • 8. Qian, L., Hinestroza, J.P., 2004. Application of Nanotechnology for High Performance Textiles. Journal of Textile and Apparel, Technology and Management, 4(1), 1-7.
  • 9. Kirecci, A., Özkoç, Ü., İçoğlu, H.İ., 2012. Determination of Optimal Production Parameters for Polyacrylonitrile Nanofibers, Journal of Applied Polymer Science, 124(6), 4961-4968.
  • 10. Macossay, J., Marruffo, A., Rincon, R., Eubanks, T., Kuang, A., 2007. Effect of Needle Diameter on Nanofiber Diameter and Thermal Properties of Electrospun Poly (Methyl Methacrylate), Polymers for Advanced Technologies, 18(3), 180-183.
  • 11. He, H., Kara, Y., Molnar, K., 2018. Effect of Needle Characteristic on Fibrous PEO Produced by Electrospinning, Resolution and Discovery, 1-5.
  • 12. Abunahel, B.M., Azman, N.Z.N., Jamil, M., 2018. Effect of Needle Diameter on the Morphological Structure of Electrospun n-Bi2O3/Epoxy-PVA Nanofiber Mats, Chemical and Materials Engineering, 12(6), 296-299.
  • 13. Kizildag, N., Beceren, Y., Kazanci, M., Cukul, D., 2012. Effect of Needle Diameter on Diameter of Electropsun Silk Fibroin Nanofibers, RMUTP International Conference: Textiles and Fashion, Bangkok, Thailand.
  • 14. Mo, X.M., Xu, C.Y., Kotaki, M.E.A., Ramakrishna, S., 2004. Electrospun P (LLA-CL) Nanofiber: A Biomimetic Extracellular Matrix for Smooth Muscle Cell and Endothelial Cell Proliferation, Biomaterials, 25(10), 1883-1890.
  • 15. Shahabadi, S.M.S., Kheradmand, A., Montazeri, V., Ziaee, H., 2015. Effects of Process and Ambient Parameters on Diameter and Morphology of Electrospun Polyacrylonitrile Nanofibers, Polymer Science Series A, 57(2), 155-167.
  • 16. Heikkilä, P., Harlin, A., 2008. Parameter Study of Electrospinning of Polyamide-6, European Polymer Journal, 44(10), 3067-3079.
  • 17. Sencadas, V., Correia, D. M., Areias, A., Botelho, G., Fonseca, A. M., Neves, I. C., Mendez, S. L., 2012. Determination of the Parameters Affecting Electrospun Chitosan Fiber Size Distribution and Morphology, Carbohydrate Polymers, 87(2), 1295-1301.
  • 18. Kuchi, C., Harish, G. S., Reddy, P. S., 2018. Effect of Polymer Concentration, Needle Diameter and Annealing Temperature on TiO2-PVP composite nanofibers synthesized by electrospinning technique, Ceramics International, 44(5), 5266-5272.
  • 19. Sencadas, V., Ribeiro, C., Nunes-Pereira, J., Correia, V., Lanceros-Méndez, S., 2012. Fiber Average Size and Distribution Dependence on the Electrospinning Parameters of Poly (Vinylidene Fluoride–trifluoroethylene) Membranes for Biomedical Applications, Applied Physics A, 109(3), 685-691.
  • 20. Zhao, S., Wu, X., Wang, L., Huang, Y., 2004. Electrospinning of Ethyl–cyanoethyl Cellulose/tetrahydrofuran Solutions, Journal of Applied Polymer Science, 91(1), 242-246.
  • 21. Wang, C., Zhang, W., Huang, Z.H., Yan, E.Y., Su, Y.H., 2006. Effect of Concentration, Voltage, Take-over Distance and Diameter of Pinhead on Precursory Poly (Phenylene Vinylene) Electrospinning, Pigment & Resin Technology, 35(5), 278-283.
  • 22. Park, J.Y., Lee, I.H., Bea, G.N., 2008. Optimization of the Electrospinning Conditions for Preparation of Nanofibers from Polyvinylacetate (PVAc) in Ethanol Solvent, Journal of Industrial and Engineering Chemistry, 14(6), 707-713.
  • 23. Tan, S.H., Inai, R., Kotaki, M., Ramakrishna, S., 2005. Systematic Parameter Study for Ultra-fine Fiber Fabrication Via Electrospinning Process, Polymer, 46(16), 6128-6134.

Effect of Needle Diameter and Flow Rate on Electrospun Polyacrylonitrile Nanofiber Morphology

Yıl 2019, Cilt: 34 Sayı: 4, 163 - 170, 31.12.2019
https://doi.org/10.21605/cukurovaummfd.704171

Öz

Due to the advantageous properties, electrospinning is the most common method in nanofiber production. While some electrospinning parameters (viscosity, surface tension etc.) are fundamentally important on nanofiber morphology, the others (applied voltage, feed rate etc.) are also important. Different relationships between needle diameter and average nanofiber diameter for various polymers have been mentioned in the literature. In this study, the effect of needle diameter and flow rate on morphology of electrospun polyacrylonitrile (PAN) nanofibers are investigated. Scanning electron microscopy (SEM) is used for determination of morphology and also an image processing software is used for determination of average diameter and standard deviation of PAN nanofibers. The results show that, average nanofiber diameter increases with increasing of needle diameter and flow rate. Also, lower nanofiber diameter deviation is obtained in larger diameter needles. Also it is seen that, bead formation increases with increasing of needle diameter for especially 60 µL/min of feed rate value.

Kaynakça

  • 1. Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., 2003. A Review on Polymer Nanofibers by Electrospinning and their Applications in Nanocomposites, Composites Science and Technology, 63(15), 2223-2253.
  • 2. Gibson, P.W., Lee, C., Ko, F., Reneker, D., 2007. Application of Nanofiber Technology to Nonwoven Thermal Insulation, Journal of Engineered Fibers and Fabrics, 2(2), 32-40.
  • 3. Rutledge, G.C., Fridrikh, S.V., 2007. Formation of Fibers by Electrospinning, Advanced Drug Delivery Reviews, 59(14), 1384-1391.
  • 4. Baumgarten, P.K., 1971. Electrostatic Spinning of Acrylic Microfibers, Journal of Colloid and Interface Science, 36(1), 71-79.
  • 5. Doshi, J., Reneker, D.H., 1995. Electrospinning Process and Applications of Electrospun Fibers, Journal of Electrostatics, 35(2-3), 151-160.
  • 6. Formhals, A. 194. US Patent, 1, 975 504.
  • 7. Sawhney, A.P.S., Condon, B., Singh, K.V., Pang, S.S., Li, G., Hui, D., 2008. Modern Applications of Nanotechnology in Textiles, Textile Research Journal, 78(8), 731-739.
  • 8. Qian, L., Hinestroza, J.P., 2004. Application of Nanotechnology for High Performance Textiles. Journal of Textile and Apparel, Technology and Management, 4(1), 1-7.
  • 9. Kirecci, A., Özkoç, Ü., İçoğlu, H.İ., 2012. Determination of Optimal Production Parameters for Polyacrylonitrile Nanofibers, Journal of Applied Polymer Science, 124(6), 4961-4968.
  • 10. Macossay, J., Marruffo, A., Rincon, R., Eubanks, T., Kuang, A., 2007. Effect of Needle Diameter on Nanofiber Diameter and Thermal Properties of Electrospun Poly (Methyl Methacrylate), Polymers for Advanced Technologies, 18(3), 180-183.
  • 11. He, H., Kara, Y., Molnar, K., 2018. Effect of Needle Characteristic on Fibrous PEO Produced by Electrospinning, Resolution and Discovery, 1-5.
  • 12. Abunahel, B.M., Azman, N.Z.N., Jamil, M., 2018. Effect of Needle Diameter on the Morphological Structure of Electrospun n-Bi2O3/Epoxy-PVA Nanofiber Mats, Chemical and Materials Engineering, 12(6), 296-299.
  • 13. Kizildag, N., Beceren, Y., Kazanci, M., Cukul, D., 2012. Effect of Needle Diameter on Diameter of Electropsun Silk Fibroin Nanofibers, RMUTP International Conference: Textiles and Fashion, Bangkok, Thailand.
  • 14. Mo, X.M., Xu, C.Y., Kotaki, M.E.A., Ramakrishna, S., 2004. Electrospun P (LLA-CL) Nanofiber: A Biomimetic Extracellular Matrix for Smooth Muscle Cell and Endothelial Cell Proliferation, Biomaterials, 25(10), 1883-1890.
  • 15. Shahabadi, S.M.S., Kheradmand, A., Montazeri, V., Ziaee, H., 2015. Effects of Process and Ambient Parameters on Diameter and Morphology of Electrospun Polyacrylonitrile Nanofibers, Polymer Science Series A, 57(2), 155-167.
  • 16. Heikkilä, P., Harlin, A., 2008. Parameter Study of Electrospinning of Polyamide-6, European Polymer Journal, 44(10), 3067-3079.
  • 17. Sencadas, V., Correia, D. M., Areias, A., Botelho, G., Fonseca, A. M., Neves, I. C., Mendez, S. L., 2012. Determination of the Parameters Affecting Electrospun Chitosan Fiber Size Distribution and Morphology, Carbohydrate Polymers, 87(2), 1295-1301.
  • 18. Kuchi, C., Harish, G. S., Reddy, P. S., 2018. Effect of Polymer Concentration, Needle Diameter and Annealing Temperature on TiO2-PVP composite nanofibers synthesized by electrospinning technique, Ceramics International, 44(5), 5266-5272.
  • 19. Sencadas, V., Ribeiro, C., Nunes-Pereira, J., Correia, V., Lanceros-Méndez, S., 2012. Fiber Average Size and Distribution Dependence on the Electrospinning Parameters of Poly (Vinylidene Fluoride–trifluoroethylene) Membranes for Biomedical Applications, Applied Physics A, 109(3), 685-691.
  • 20. Zhao, S., Wu, X., Wang, L., Huang, Y., 2004. Electrospinning of Ethyl–cyanoethyl Cellulose/tetrahydrofuran Solutions, Journal of Applied Polymer Science, 91(1), 242-246.
  • 21. Wang, C., Zhang, W., Huang, Z.H., Yan, E.Y., Su, Y.H., 2006. Effect of Concentration, Voltage, Take-over Distance and Diameter of Pinhead on Precursory Poly (Phenylene Vinylene) Electrospinning, Pigment & Resin Technology, 35(5), 278-283.
  • 22. Park, J.Y., Lee, I.H., Bea, G.N., 2008. Optimization of the Electrospinning Conditions for Preparation of Nanofibers from Polyvinylacetate (PVAc) in Ethanol Solvent, Journal of Industrial and Engineering Chemistry, 14(6), 707-713.
  • 23. Tan, S.H., Inai, R., Kotaki, M., Ramakrishna, S., 2005. Systematic Parameter Study for Ultra-fine Fiber Fabrication Via Electrospinning Process, Polymer, 46(16), 6128-6134.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Halil İbrahim İçoğlu Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 4

Kaynak Göster

APA İçoğlu, H. İ. (2019). İğne Çapı ve Besleme Hızının Elektro Çekim Tekniğiyle Üretilmiş Poliakrilonitril Nanoliflerinin Morfolojisine Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(4), 163-170. https://doi.org/10.21605/cukurovaummfd.704171
AMA İçoğlu Hİ. İğne Çapı ve Besleme Hızının Elektro Çekim Tekniğiyle Üretilmiş Poliakrilonitril Nanoliflerinin Morfolojisine Etkisi. cukurovaummfd. Aralık 2019;34(4):163-170. doi:10.21605/cukurovaummfd.704171
Chicago İçoğlu, Halil İbrahim. “İğne Çapı Ve Besleme Hızının Elektro Çekim Tekniğiyle Üretilmiş Poliakrilonitril Nanoliflerinin Morfolojisine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34, sy. 4 (Aralık 2019): 163-70. https://doi.org/10.21605/cukurovaummfd.704171.
EndNote İçoğlu Hİ (01 Aralık 2019) İğne Çapı ve Besleme Hızının Elektro Çekim Tekniğiyle Üretilmiş Poliakrilonitril Nanoliflerinin Morfolojisine Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 4 163–170.
IEEE H. İ. İçoğlu, “İğne Çapı ve Besleme Hızının Elektro Çekim Tekniğiyle Üretilmiş Poliakrilonitril Nanoliflerinin Morfolojisine Etkisi”, cukurovaummfd, c. 34, sy. 4, ss. 163–170, 2019, doi: 10.21605/cukurovaummfd.704171.
ISNAD İçoğlu, Halil İbrahim. “İğne Çapı Ve Besleme Hızının Elektro Çekim Tekniğiyle Üretilmiş Poliakrilonitril Nanoliflerinin Morfolojisine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34/4 (Aralık 2019), 163-170. https://doi.org/10.21605/cukurovaummfd.704171.
JAMA İçoğlu Hİ. İğne Çapı ve Besleme Hızının Elektro Çekim Tekniğiyle Üretilmiş Poliakrilonitril Nanoliflerinin Morfolojisine Etkisi. cukurovaummfd. 2019;34:163–170.
MLA İçoğlu, Halil İbrahim. “İğne Çapı Ve Besleme Hızının Elektro Çekim Tekniğiyle Üretilmiş Poliakrilonitril Nanoliflerinin Morfolojisine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 34, sy. 4, 2019, ss. 163-70, doi:10.21605/cukurovaummfd.704171.
Vancouver İçoğlu Hİ. İğne Çapı ve Besleme Hızının Elektro Çekim Tekniğiyle Üretilmiş Poliakrilonitril Nanoliflerinin Morfolojisine Etkisi. cukurovaummfd. 2019;34(4):163-70.