Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental Determination of Drying Kinetics of Peanut Dried by using Drying Air at Different Humidity

Yıl 2020, Cilt: 35 Sayı: 2, 537 - 550, 30.06.2020
https://doi.org/10.21605/cukurovaummfd.792476

Öz

Drying and storing of products is a widely used method since ancient times. The main purpose of the food drying process is to remove the water contained in the product from the product. In this way, the development of microorganisms in the product will be stopped and the shelf life of the products will be extended. In this study, the drying of the peanut product produced and harvested in Osmaniye was investigated for different absolute humidity values of the drying air. The drying behavior of peanuts was determined experimentally using the experimental setup designed and manufactured. In the study, the experimentally obtained moisture ratio value was fit to 22 different thin layer drying models. As a result of the study, it was observed that for the drying air at the same temperature, the diffusion coefficient and the drying rate increase with the decrease of the drying air humidity. The thin layer drying model developed by Hii et al. was determined as the model best converging to the experimentally obtained moisture ratio value.

Kaynakça

  • 1. Ceylan, I., Aktas, M., 2008. Hazelnut Drying in a Dryer Assisted Heat Pump, Journal of the Faculty of Engineering and Architecture of Gazi University, 23(1), 215-222.
  • 2. Keey, R., 1972. Introduction. In: Drying Principles and Practice, pp. 1-18, Keey, R.B. Eds., Pergamon Press, Oxford.
  • 3. Mujumdar, A., 1997. Drying Fumdamentals. In: Industrial Drying of Foods, pp. 7–30, Baker, C.G.J. Eds., Chapman & Hall, London.
  • 4. Erbay, Z., Icier, F., 2010. A Review of Thin Layer Drying of Foods: Theory, Modeling and Experimental Results, Critical Reviews in Food Science and Nutrition, 50(5), 441–464.
  • 5. Nagaya, K., Li, Y., Jin, Z., Fukumuro, M., Ando, Y., Akaishi, A., 2006. Low-temperature Desiccant-based Food Drying System with Airflow and Temperature Control, Journal of Food Engineering, 75(1), 71–77.
  • 6. Karam, M.C., Petit, J., Zimmer, D., Baudelaire Djantou, E., Scher, J., 2016. Effects of Drying and Grinding in Production of Fruit and Vegetable Powders: A Review, Journal of Food Engineering, 188, 32–49.
  • 7. Misha, S., Mat, S., Ruslan, M.H., Sopian, K., 2012. Review of Solid/liquid Desiccant in the Drying Applications and its Regeneration Methods, Renewable and Sustainable Energy Reviews, 16(7), 4686–4707.
  • 8. Kaya, A., Aydin, O., Dincer, I., 2008. Experimental and Numerical Investigation of Heat and Mass Transfer During Drying of Hayward Kiwi Fruits (Actinidia Deliciosa Planch), Journal of Food Engineering, 88(3), 323–330.
  • 9. Butts, C.L., Williams, E.J., Sanders, T.H., 2002. Algorithms for Automated Temperature Controls to Cure Peanuts, Postharvest Biology and Technology, 24(3), 309–316.
  • 10. Gürses, M., Eroğan, A., Sert, S., 2003. Erzurum Piyasasında Satılan Yerfıstığı, Antepfıstığı ve Bademlerin Aflatoksin Yönünden İncelenmesi, Gıda, 28(6), 607–610.
  • 11. Gürsoy, N., Biçici, M., 2006. Çukurova Bölgesinde Yetiştirilen Yerfıstıklarında Hasat, Kurutma ve Depolama Kademelerinde Aflatoksin Oluşumu, Gıda, 31(4), 209–215.
  • 12. Kabak, B., 2007. Bazı Mikotoksinlerin Detoksifikasyonunda Lactobacillus ve Bifidobacterium Suşlarının Kullanımı, Doktora Tezi, 164 s., Fen Bilimleri Enstitüsü, Çukurova Üniversitesi.
  • 13. Lavkor, I., Biçici, M., 2015. Aflatoxin Occurrence in Peanuts Grown in Osmaniye at Harvest, Post-harvest, Drying and Pre-storage Periods, Tarım Bilimleri Dergisi, 21(3), 394-405.
  • 14. Hoque A.K.M., 1993. Application of Liquid Desiccant Drying System in Agricultural Products, Graduate Faculty of Texas Tech University, Mechanical Engineering, Master of Science in Mechanical Engineering, Texas Tech University, 167p, Austin.
  • 15. Troeger, J., Butler, J., 1977. Solar Drying of Peanuts in Georgia, in Solar Drying of Peanuts. Solar Crop Drying Conference Proceedings, 32–43.
  • 16. Marinos-Kouris, D., Maroulis, Z., 1995. Transport Properties in the Drying of Solids. In:Handbook of Industrial Drying. pp.113–160 (Mujumdar, A.S. Eds., 2nd Edition), Marcel Dekker Inc., New York.
  • 17. Baker, C.G., 1997. Preface. In: Industrial Drying of Foods, Baker, C.G.,Chapman & Hall, London.
  • 18. Kavak, Akpinar, E., Bicer, Y., Cetinkaya, F., 2006. Modelling of Thin Layer Drying of Parsley Leaves in a Convective Dryer and Under Open Sun, Journal of Food Engineering, 75(3), 308–315.
  • 19. Madamba, P.S., Driscoll, R.H., Buckle, K.A., 1996. The Thin-layer Drying Characteristics of Garlic Slices, Journal of Food Engineering, 29(1), 75–97.
  • 20. Ozdemir, M., Devres, Y.O., 2000. The Thin Layer Drying Characteristics of Hazelnuts During Roasting, Food Science and Technology Research, 42, 225–233.
  • 21. St. John, C., Otten, L., 1989. Thin-layer Microwave Drying of Peanuts, Canadian Agricultural Engineering, 31(2), 265–270.
  • 22. Sacilik, K., Keskin, R., Elicin, A.K., 2006. Mathematical Modelling of Solar Tunnel Drying of Thin Layer Organic Tomato, Journal of Food Engineering, 73 (3), 231–238.
  • 23. Süfer, Ö., Sezer, S., Demir, H., 2017. Thin Layer Mathematical Modeling of Convective, Vacuum and Microwave Drying of Intact and Brined Onion Slices, Journal of Food Processing and Preservation, 41(6).
  • 24. Çerçi, K.N., Sufer, Ö., Söyler, M., Hürdoğan, E., Özalp, C., 2018. Thin Layer Drying of Zucchini in Solar Dryer Located in Osmaniye Region, Tehnički Glasnik, 12(2), 79–85.
  • 25. Akhondi, E., Kazemi, A., Maghsoodi, V., 2011. Determination of a Suitable Thin Layer Drying Curve Model for Saffron (Crocus Sativus L) Stigmas in an Infrared Dryer, Scientia Iranica, 18(6), 1397–1401.
  • 26. Ponkham, K., Meeso, N., Soponronnarit, S., Siriamornpun, S., 2012. Modeling of Combined Far-infrared Radiation and Air Drying of a Ring Shaped-pineapple with/without Shrinkage, Food and Bioproducts Processing, 90(2), 155–164.
  • 27. Doymaz, I., 2012. Evaluation of Some Thin- layer Drying Models of Persimmon Slices (Diospyros Kaki L.), Energy Conversion and Management, 56, 199–205.
  • 28. Dash, K.K., Gope, S., Sethi, A., Doloi, M., 2013. Star Fruit Slices, International Journal of Agriculture and Food Science Technology., 4(7), 679–686.
  • 29. Darvishi, H., Asl, A.R., Asghari, A., Azadbakht, M., Najafi, G., Khodaei, J., 2014. Study of the Drying Kinetics of Pepper, Journal of the Saudi Society of Agricultural Sciences, 13(2), 130–138.
  • 30. Akpinar, E.K., Toraman, S., 2016. Determination of Drying Kinetics and Convective Heat Transfer Coefficients of Ginger Slices, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 52(10), 2271–2281.
  • 31. Darıcı, S., Şen, S., 2015. Experimental Investigation of Convective Drying Kinetics of Kiwi Under Different Conditions, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 51 (8), 1167–1176.
  • 32. Sahdev, R.K., Kumar, M., Dhingra, A.K., 2017. Development of Empirical Expression for Thin Layer Groundnut Drying Under Open Sun and Forced Convection Modes, Agricultural Engineering International: CIGR Journal, 19(4), 152–158.
  • 33. Kaya, A., 2008. Kurutmada Isı ve Kütle Transferinin Teorik ve Deneysel Olarak İncelenmesi, Karadeniz Teknik Üniversitesi.
  • 34. Holman, J., 2001. Experimental methods for engineers (8th ed.), McGraw-Hill, ABD.
  • 35. Akpınar, E., Biçer, Y., 2003. Investigation of Drying Behaviour of Pumpkin in a Cyclone, G.Ü. Fen Bilimleri Dergisi, 16(1), 159–169.
  • 36. Hanif, S., Sultan, M., Miyazaki, T., Koyama, S., 2019. Investigation of Energy-efficient Solid Desiccant System for the Drying of Wheat Grains, International Journal of Agricultural and Biological Engineering, 12(1), 221–228.
  • 37. Mota, C.L., Luciano, C., Dias, A., Barroca, M.J., Guiné, R.P.F., 2010. Convective Drying of Onion: Kinetics and Nutritional Evaluation, Food and Bioproducts Processing, 88(2–3), 115–123.
  • 38. Bruce, D.M., 1985. Exposed-layer Barley Drying: Three Models Fitted to New Data Up to 150 °C, Journal of Agricultural Engineering Research, 32(4), 337–348.
  • 39. Page, G., 1949. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers, Purdue Üniversitesi, Amerika.
  • 40. White, G.M., Ross, I.J., Poneleit, C.G., 1981. Fully-Exposed Drying of Popcorn, Transactions of the American Society of Agricultural Engineers, 24(2), 466–468.
  • 41. Henderson, S., Pabis, S., 1961. Grain Drying Theory I: Temperature Effect on Drying Coefficient, Journal of Agricultural Engineering Research, 6, 169–174.
  • 42. Hii, C.L., Law, C.L., Cloke, M., 2009. Modeling Using a New Thin Layer Drying Model and Product Quality of Cocoa, Journal of Food Engineering, 90(2), 191–198.
  • 43. Togrul, I.T., Pehlivan, D., 2002. Mathematical Modelling of Solar Drying of Apricots in Thin Layers, Journal of Food Engineering, 55(3), 209–216.
  • 44. Henderson, S.M., 1974. Progress in Developing the Thin Layer Drying Equation., Transactions of the American Society of Agricultural Engineers, 17(6), 1–3.
  • 45. Sharma, G.P., Prasad, S., 2004. Effective Moisture Diffusivity of Garlic Cloves Undergoing Microwave-convective Drying, Journal of Food Engineering, 65(4), 609–617.
  • 46. Corzo, O., Bracho, N., Pereira, A., Vásquez, A., 2008. Weibull Distribution for Modeling Air Drying of Coroba Slices, LWT-Food Science and Technology, 41(10), 2023–2028.
  • 47. Dalvand, M., Mohtasebi, S., Rafiee, S., 2012. Determining the Influence of Drying Conditions on EHD Drying Process, Journal of Agricultural and Biological Science, 7, 396-401.
  • 48. Figiel, A., 2009. Drying Kinetics and Quality of Vacuum-microwave Dehydrated Garlic Cloves and Slices, Journal of Food Engineering, 94(1), 98–104.
  • 49. Vega-Gálvez, A., Scala, K.D., Rodriguez, K., Lemus-Mondaca, R., Miranda, M., Lopez, J., Perez-Won, M., 2009. Effect of Air-drying Temperature on Physico-chemical Properties, Antioxidant Capacity, Colour and Total Phenolic Content of Red Pepper (Capsicum Annuum, L. var. Hungarian), Food Chemistry, 117(4), 647–653.
  • 50. Haghi, A., Angiz, F., 2007. Heat and Mass Transfer in Thermal Drying of Wool: A Theoretical Approach, in Proceedings of the 5th Asia-Pasific Drying Conference, 443–448.
  • 51. Lemus-Mondaca, R., Miranda, M., Andres Grau, A., Briones, V., Villalobos, R., Vega- Gálvez, A., 2009. Effect of Osmotic Pretreatment on Hot Air Drying Kinetics and Quality of Chilean Papaya (Carica Pubescens), Drying Technology, 27(10), 1105–1115.
  • 52. Noomhorn, A., Verma, L., 1986. Generalized Single-layer Rice Drying Models, Transactions of the ASAE, 29, 587–591.
  • 53. Yaldiz, O., Ertekin, C., 2001. Thin Layer Solar Drying of Some Vegetables, Drying Technology, 19(3–4), 583–597.
  • 54. Verma, L., Bucklin, R., Endan, J., Wratten F.T, 1985. Effects of Drying Air Parameters on Rice Drying Models, Transaction of the ASAE, 28, 296–301.
  • 55. Sharaf-Eldeen, Y., Blaisdell, J., Hamdy, M., 1980. A Model for Ear Corn Drying, Transaction of the ASAE, 23(5), 1261–1271.
  • 56. Diamante, L., Munro, P., 1991. Mathematical Modelling of Hot Air Drying of Sweet Potato Slices, International Journal of Food Science and Technology, 26, 99–109.

Farklı Nemde Kurutma Havası Kullanılarak Kurutulan Yerfıstığının Kuruma Kinetiklerinin Deneysel Olarak Belirlenmesi

Yıl 2020, Cilt: 35 Sayı: 2, 537 - 550, 30.06.2020
https://doi.org/10.21605/cukurovaummfd.792476

Öz

Ürünlerin kurutularak saklanması eski çağlardan beri yaygın olarak kullanılan bir yöntemdir. Gıda kurutma işleminde temel amaç ürünün içerisinde bulunan suyun üründen uzaklaştırılmasıdır. Bu sayede ürün içerisindeki mikroorganizmaların gelişmesini durdurulacak ve ürünlerin raf ömrü uzatılacaktır. Bu çalışmada Osmaniye’de üretimi ve hasadı yapılan yerfıstığı ürününün kurutulması, kurutma havasının farklı mutlak nem değerleri için incelenmiştir. Yerfıstığının kuruma davranışı, tasarlanarak imal edilen deney düzeneği kullanılarak deneysel olarak belirlenmiştir. Çalışmada ayrıca deneysel olarak elde edilen alınabilir nem oranı değeri 22 farklı ince tabaka kurutma modeline fit edilmiştir. Çalışma sonucunda aynı sıcaklıkta kurutma havası için, kurutma havası nem değerinin düşmesi ile difüzyon katsayısının ve kuruma hızının arttığı gözlemlenmiştir. Hii ve arkadaşları tarafından geliştirilen ince tabaka kuruma modeli, deneysel olarak elde edilen alınabilir nem oranı değerine en iyi yakınsayan model olarak belirlenmiştir.

Kaynakça

  • 1. Ceylan, I., Aktas, M., 2008. Hazelnut Drying in a Dryer Assisted Heat Pump, Journal of the Faculty of Engineering and Architecture of Gazi University, 23(1), 215-222.
  • 2. Keey, R., 1972. Introduction. In: Drying Principles and Practice, pp. 1-18, Keey, R.B. Eds., Pergamon Press, Oxford.
  • 3. Mujumdar, A., 1997. Drying Fumdamentals. In: Industrial Drying of Foods, pp. 7–30, Baker, C.G.J. Eds., Chapman & Hall, London.
  • 4. Erbay, Z., Icier, F., 2010. A Review of Thin Layer Drying of Foods: Theory, Modeling and Experimental Results, Critical Reviews in Food Science and Nutrition, 50(5), 441–464.
  • 5. Nagaya, K., Li, Y., Jin, Z., Fukumuro, M., Ando, Y., Akaishi, A., 2006. Low-temperature Desiccant-based Food Drying System with Airflow and Temperature Control, Journal of Food Engineering, 75(1), 71–77.
  • 6. Karam, M.C., Petit, J., Zimmer, D., Baudelaire Djantou, E., Scher, J., 2016. Effects of Drying and Grinding in Production of Fruit and Vegetable Powders: A Review, Journal of Food Engineering, 188, 32–49.
  • 7. Misha, S., Mat, S., Ruslan, M.H., Sopian, K., 2012. Review of Solid/liquid Desiccant in the Drying Applications and its Regeneration Methods, Renewable and Sustainable Energy Reviews, 16(7), 4686–4707.
  • 8. Kaya, A., Aydin, O., Dincer, I., 2008. Experimental and Numerical Investigation of Heat and Mass Transfer During Drying of Hayward Kiwi Fruits (Actinidia Deliciosa Planch), Journal of Food Engineering, 88(3), 323–330.
  • 9. Butts, C.L., Williams, E.J., Sanders, T.H., 2002. Algorithms for Automated Temperature Controls to Cure Peanuts, Postharvest Biology and Technology, 24(3), 309–316.
  • 10. Gürses, M., Eroğan, A., Sert, S., 2003. Erzurum Piyasasında Satılan Yerfıstığı, Antepfıstığı ve Bademlerin Aflatoksin Yönünden İncelenmesi, Gıda, 28(6), 607–610.
  • 11. Gürsoy, N., Biçici, M., 2006. Çukurova Bölgesinde Yetiştirilen Yerfıstıklarında Hasat, Kurutma ve Depolama Kademelerinde Aflatoksin Oluşumu, Gıda, 31(4), 209–215.
  • 12. Kabak, B., 2007. Bazı Mikotoksinlerin Detoksifikasyonunda Lactobacillus ve Bifidobacterium Suşlarının Kullanımı, Doktora Tezi, 164 s., Fen Bilimleri Enstitüsü, Çukurova Üniversitesi.
  • 13. Lavkor, I., Biçici, M., 2015. Aflatoxin Occurrence in Peanuts Grown in Osmaniye at Harvest, Post-harvest, Drying and Pre-storage Periods, Tarım Bilimleri Dergisi, 21(3), 394-405.
  • 14. Hoque A.K.M., 1993. Application of Liquid Desiccant Drying System in Agricultural Products, Graduate Faculty of Texas Tech University, Mechanical Engineering, Master of Science in Mechanical Engineering, Texas Tech University, 167p, Austin.
  • 15. Troeger, J., Butler, J., 1977. Solar Drying of Peanuts in Georgia, in Solar Drying of Peanuts. Solar Crop Drying Conference Proceedings, 32–43.
  • 16. Marinos-Kouris, D., Maroulis, Z., 1995. Transport Properties in the Drying of Solids. In:Handbook of Industrial Drying. pp.113–160 (Mujumdar, A.S. Eds., 2nd Edition), Marcel Dekker Inc., New York.
  • 17. Baker, C.G., 1997. Preface. In: Industrial Drying of Foods, Baker, C.G.,Chapman & Hall, London.
  • 18. Kavak, Akpinar, E., Bicer, Y., Cetinkaya, F., 2006. Modelling of Thin Layer Drying of Parsley Leaves in a Convective Dryer and Under Open Sun, Journal of Food Engineering, 75(3), 308–315.
  • 19. Madamba, P.S., Driscoll, R.H., Buckle, K.A., 1996. The Thin-layer Drying Characteristics of Garlic Slices, Journal of Food Engineering, 29(1), 75–97.
  • 20. Ozdemir, M., Devres, Y.O., 2000. The Thin Layer Drying Characteristics of Hazelnuts During Roasting, Food Science and Technology Research, 42, 225–233.
  • 21. St. John, C., Otten, L., 1989. Thin-layer Microwave Drying of Peanuts, Canadian Agricultural Engineering, 31(2), 265–270.
  • 22. Sacilik, K., Keskin, R., Elicin, A.K., 2006. Mathematical Modelling of Solar Tunnel Drying of Thin Layer Organic Tomato, Journal of Food Engineering, 73 (3), 231–238.
  • 23. Süfer, Ö., Sezer, S., Demir, H., 2017. Thin Layer Mathematical Modeling of Convective, Vacuum and Microwave Drying of Intact and Brined Onion Slices, Journal of Food Processing and Preservation, 41(6).
  • 24. Çerçi, K.N., Sufer, Ö., Söyler, M., Hürdoğan, E., Özalp, C., 2018. Thin Layer Drying of Zucchini in Solar Dryer Located in Osmaniye Region, Tehnički Glasnik, 12(2), 79–85.
  • 25. Akhondi, E., Kazemi, A., Maghsoodi, V., 2011. Determination of a Suitable Thin Layer Drying Curve Model for Saffron (Crocus Sativus L) Stigmas in an Infrared Dryer, Scientia Iranica, 18(6), 1397–1401.
  • 26. Ponkham, K., Meeso, N., Soponronnarit, S., Siriamornpun, S., 2012. Modeling of Combined Far-infrared Radiation and Air Drying of a Ring Shaped-pineapple with/without Shrinkage, Food and Bioproducts Processing, 90(2), 155–164.
  • 27. Doymaz, I., 2012. Evaluation of Some Thin- layer Drying Models of Persimmon Slices (Diospyros Kaki L.), Energy Conversion and Management, 56, 199–205.
  • 28. Dash, K.K., Gope, S., Sethi, A., Doloi, M., 2013. Star Fruit Slices, International Journal of Agriculture and Food Science Technology., 4(7), 679–686.
  • 29. Darvishi, H., Asl, A.R., Asghari, A., Azadbakht, M., Najafi, G., Khodaei, J., 2014. Study of the Drying Kinetics of Pepper, Journal of the Saudi Society of Agricultural Sciences, 13(2), 130–138.
  • 30. Akpinar, E.K., Toraman, S., 2016. Determination of Drying Kinetics and Convective Heat Transfer Coefficients of Ginger Slices, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 52(10), 2271–2281.
  • 31. Darıcı, S., Şen, S., 2015. Experimental Investigation of Convective Drying Kinetics of Kiwi Under Different Conditions, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 51 (8), 1167–1176.
  • 32. Sahdev, R.K., Kumar, M., Dhingra, A.K., 2017. Development of Empirical Expression for Thin Layer Groundnut Drying Under Open Sun and Forced Convection Modes, Agricultural Engineering International: CIGR Journal, 19(4), 152–158.
  • 33. Kaya, A., 2008. Kurutmada Isı ve Kütle Transferinin Teorik ve Deneysel Olarak İncelenmesi, Karadeniz Teknik Üniversitesi.
  • 34. Holman, J., 2001. Experimental methods for engineers (8th ed.), McGraw-Hill, ABD.
  • 35. Akpınar, E., Biçer, Y., 2003. Investigation of Drying Behaviour of Pumpkin in a Cyclone, G.Ü. Fen Bilimleri Dergisi, 16(1), 159–169.
  • 36. Hanif, S., Sultan, M., Miyazaki, T., Koyama, S., 2019. Investigation of Energy-efficient Solid Desiccant System for the Drying of Wheat Grains, International Journal of Agricultural and Biological Engineering, 12(1), 221–228.
  • 37. Mota, C.L., Luciano, C., Dias, A., Barroca, M.J., Guiné, R.P.F., 2010. Convective Drying of Onion: Kinetics and Nutritional Evaluation, Food and Bioproducts Processing, 88(2–3), 115–123.
  • 38. Bruce, D.M., 1985. Exposed-layer Barley Drying: Three Models Fitted to New Data Up to 150 °C, Journal of Agricultural Engineering Research, 32(4), 337–348.
  • 39. Page, G., 1949. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers, Purdue Üniversitesi, Amerika.
  • 40. White, G.M., Ross, I.J., Poneleit, C.G., 1981. Fully-Exposed Drying of Popcorn, Transactions of the American Society of Agricultural Engineers, 24(2), 466–468.
  • 41. Henderson, S., Pabis, S., 1961. Grain Drying Theory I: Temperature Effect on Drying Coefficient, Journal of Agricultural Engineering Research, 6, 169–174.
  • 42. Hii, C.L., Law, C.L., Cloke, M., 2009. Modeling Using a New Thin Layer Drying Model and Product Quality of Cocoa, Journal of Food Engineering, 90(2), 191–198.
  • 43. Togrul, I.T., Pehlivan, D., 2002. Mathematical Modelling of Solar Drying of Apricots in Thin Layers, Journal of Food Engineering, 55(3), 209–216.
  • 44. Henderson, S.M., 1974. Progress in Developing the Thin Layer Drying Equation., Transactions of the American Society of Agricultural Engineers, 17(6), 1–3.
  • 45. Sharma, G.P., Prasad, S., 2004. Effective Moisture Diffusivity of Garlic Cloves Undergoing Microwave-convective Drying, Journal of Food Engineering, 65(4), 609–617.
  • 46. Corzo, O., Bracho, N., Pereira, A., Vásquez, A., 2008. Weibull Distribution for Modeling Air Drying of Coroba Slices, LWT-Food Science and Technology, 41(10), 2023–2028.
  • 47. Dalvand, M., Mohtasebi, S., Rafiee, S., 2012. Determining the Influence of Drying Conditions on EHD Drying Process, Journal of Agricultural and Biological Science, 7, 396-401.
  • 48. Figiel, A., 2009. Drying Kinetics and Quality of Vacuum-microwave Dehydrated Garlic Cloves and Slices, Journal of Food Engineering, 94(1), 98–104.
  • 49. Vega-Gálvez, A., Scala, K.D., Rodriguez, K., Lemus-Mondaca, R., Miranda, M., Lopez, J., Perez-Won, M., 2009. Effect of Air-drying Temperature on Physico-chemical Properties, Antioxidant Capacity, Colour and Total Phenolic Content of Red Pepper (Capsicum Annuum, L. var. Hungarian), Food Chemistry, 117(4), 647–653.
  • 50. Haghi, A., Angiz, F., 2007. Heat and Mass Transfer in Thermal Drying of Wool: A Theoretical Approach, in Proceedings of the 5th Asia-Pasific Drying Conference, 443–448.
  • 51. Lemus-Mondaca, R., Miranda, M., Andres Grau, A., Briones, V., Villalobos, R., Vega- Gálvez, A., 2009. Effect of Osmotic Pretreatment on Hot Air Drying Kinetics and Quality of Chilean Papaya (Carica Pubescens), Drying Technology, 27(10), 1105–1115.
  • 52. Noomhorn, A., Verma, L., 1986. Generalized Single-layer Rice Drying Models, Transactions of the ASAE, 29, 587–591.
  • 53. Yaldiz, O., Ertekin, C., 2001. Thin Layer Solar Drying of Some Vegetables, Drying Technology, 19(3–4), 583–597.
  • 54. Verma, L., Bucklin, R., Endan, J., Wratten F.T, 1985. Effects of Drying Air Parameters on Rice Drying Models, Transaction of the ASAE, 28, 296–301.
  • 55. Sharaf-Eldeen, Y., Blaisdell, J., Hamdy, M., 1980. A Model for Ear Corn Drying, Transaction of the ASAE, 23(5), 1261–1271.
  • 56. Diamante, L., Munro, P., 1991. Mathematical Modelling of Hot Air Drying of Sweet Potato Slices, International Journal of Food Science and Technology, 26, 99–109.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Kamil Neyfel Çerçi

Ertaç Hürdoğan

Yayımlanma Tarihi 30 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 2

Kaynak Göster

APA Çerçi, K. N., & Hürdoğan, E. (2020). Farklı Nemde Kurutma Havası Kullanılarak Kurutulan Yerfıstığının Kuruma Kinetiklerinin Deneysel Olarak Belirlenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(2), 537-550. https://doi.org/10.21605/cukurovaummfd.792476
AMA Çerçi KN, Hürdoğan E. Farklı Nemde Kurutma Havası Kullanılarak Kurutulan Yerfıstığının Kuruma Kinetiklerinin Deneysel Olarak Belirlenmesi. cukurovaummfd. Haziran 2020;35(2):537-550. doi:10.21605/cukurovaummfd.792476
Chicago Çerçi, Kamil Neyfel, ve Ertaç Hürdoğan. “Farklı Nemde Kurutma Havası Kullanılarak Kurutulan Yerfıstığının Kuruma Kinetiklerinin Deneysel Olarak Belirlenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, sy. 2 (Haziran 2020): 537-50. https://doi.org/10.21605/cukurovaummfd.792476.
EndNote Çerçi KN, Hürdoğan E (01 Haziran 2020) Farklı Nemde Kurutma Havası Kullanılarak Kurutulan Yerfıstığının Kuruma Kinetiklerinin Deneysel Olarak Belirlenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 2 537–550.
IEEE K. N. Çerçi ve E. Hürdoğan, “Farklı Nemde Kurutma Havası Kullanılarak Kurutulan Yerfıstığının Kuruma Kinetiklerinin Deneysel Olarak Belirlenmesi”, cukurovaummfd, c. 35, sy. 2, ss. 537–550, 2020, doi: 10.21605/cukurovaummfd.792476.
ISNAD Çerçi, Kamil Neyfel - Hürdoğan, Ertaç. “Farklı Nemde Kurutma Havası Kullanılarak Kurutulan Yerfıstığının Kuruma Kinetiklerinin Deneysel Olarak Belirlenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/2 (Haziran 2020), 537-550. https://doi.org/10.21605/cukurovaummfd.792476.
JAMA Çerçi KN, Hürdoğan E. Farklı Nemde Kurutma Havası Kullanılarak Kurutulan Yerfıstığının Kuruma Kinetiklerinin Deneysel Olarak Belirlenmesi. cukurovaummfd. 2020;35:537–550.
MLA Çerçi, Kamil Neyfel ve Ertaç Hürdoğan. “Farklı Nemde Kurutma Havası Kullanılarak Kurutulan Yerfıstığının Kuruma Kinetiklerinin Deneysel Olarak Belirlenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 35, sy. 2, 2020, ss. 537-50, doi:10.21605/cukurovaummfd.792476.
Vancouver Çerçi KN, Hürdoğan E. Farklı Nemde Kurutma Havası Kullanılarak Kurutulan Yerfıstığının Kuruma Kinetiklerinin Deneysel Olarak Belirlenmesi. cukurovaummfd. 2020;35(2):537-50.