Araştırma Makalesi
BibTex RIS Kaynak Göster

PA 12/Antimon Trioksit/Sepiyolit veya Bor Kompozitleri: Mekanik Özellikler ve Alev Geciktirme

Yıl 2020, Cilt: 35 Sayı: 4, 1083 - 1090, 31.12.2020
https://doi.org/10.21605/cukurovaummfd.869179

Öz

Bu çalışmada, antimon trioksit, sepiolit veya bor tozları eklenerek üretilen poliamid 12 (PA 12) esaslı kompozitlerin mekanik ve alev geciktirici özelliklerini rapor edilmiştir. Bu kompozitler, çift vidalı ekstrüder ve sıcak presleme teknikleri ile hazırlanmıştır. PA 12 esaslı kompozitlerin mikroyapısal ve alev geciktirici özellikleri, taramalı elektron mikroskobu, dikey UL-94 yanma testi ve sınırlayıcı oksijen indeksi (LOI) testleri ile karakterize edilmiştir. Polimer kompozitlerin mekanik performansı, Shore-D sertlik, Charpy darbe dayanımı, ve çekme (dayanımı ve kopma uzaması) testleri ile ortaya çıkarılmıştır. En iyi mekanik performansın antimon oksit/sepiyolit katkılı PA 12 numunesi göstermiştir. Antimon oksit/bor katkısı yapılmış PA 12 bazlı kompozit numunenin en iyi alev geciktirici performansı göstermiştir.

Kaynakça

  • 1. Dasari, A., Yu, Z.Z., Cai, G.P., Mai, Y.W., 2013. Recent Developments in the Fire Retardancy of Polymeric Materials. Progress in Polymer Science, 38(9), 1357–1387.
  • 2. Li, F., Jianhuai, W., Jiongtian, L., Bingguo, W., Shuojiang, S., 2007. Preparation and Fire Retardancy of Antimony Oxide Nanoparticles/Mica Composition. Journal of Composite Materials, 41(12), 1487–1497.
  • 3. Hull, T.R., Witkowski, A., Hollingbery, L., 2011. Fire Retardant Action of Mineral Fillers. Polymer Degradation Stability, 96(8), 1462–1469.
  • 4. Lim, K.S., Bee, S.T., Sin, L.T., Tee, T.T., Ratnam, C.T., Hui, D., Rahmat, A.R., 2016. A Review of Application of Ammonium Polyphosphate as Intumescent Flame Retardant in Thermoplastic Composites, Composite Part B: Engineering, 84, 155–174.
  • 5. Chen, P,. Tang, M., Zhu, W., Yanga, L., Wen, S., Yan, C., Ji, Z., Nan, H., Shi, Y., 2018. Systematical Mechanism of Polyamide-12 Aging and Its Microstructural Evolution During Laser Sintering. Polymer Testing, 67, 370–379.
  • 6. Hongsrriphan, N., Patanatabutr, P., Nongyai, N., Pariyathada, N., Torudomsak, S., 2019. Mechanical and Thermal Properties of Blends Between Poly(Butylene Succinate) and Polyamide 12, Materials Today: Proceedings, 17, 1977–1986.
  • 7. Lao, S.C., Wu, C., Moon, T.J., Koo, J.H. Morgan, A., Pilato, L., Wissler, G., 2009. Flame-retardant Polyamide 11 and 12 Nanocomposites: Thermal and Flammability Properties. Journal of Composite Materials, 43(17), 1803–1818.
  • 8. Ruiz-Hitzky, E., Darder, M., Fernandes, F.M., Wicklein, B., Alcântara, A.C.S., Aranda, P., 2013. Fibrous Clays Based Bionanocomposites, Progress in Polymer Science, 38(10-11),1392–1414.
  • 9. L aoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.M., Dubois, P., 2009. New Prospects in Flame Retardant Polymer Materials: from Fundamentals to Nanocomposites. Materials Science Engineering R: Reports, 63(3), 100–125.
  • 10. Martín, C., Hunt, B.J., Ebdon, J.R., Ronda, J.C., Cadiz, V., 2006. Synthesis, Crosslinking and Flame Retardance of Polymers of Boron- Containing Difunctional Styrenic Monomers, Reactive Functional Polymers, 66(10), 1047–1054.
  • 11. Dogan, M., Unlu, M.S., 2014. Flame Retardant Effect of Boron Compounds on Red Phosphorus Containing Epoxy Resins, Polymer Degradation Stability, 99, 12–17.
  • 12. Xie, K., Gao, A., Zhang, Y., 2013. Flame Retardant Finishing of Cotton Fabric Based on Synergistic Compounds Containing Boron and Nitrogen, Carbohydrate Polymers 988(1), 706–710.
  • 13. Afkhami, M., Hassanpour, A., Fairweather, M., 2019. Effect of Reynolds Number on Particle Interaction and Agglomeration in Turbulent Channel Flow, Powder Technology, 343, 908–920.
  • 14. Pukánszky, B., 1990. Influence of Interface Interaction on the Ultimate Tensile Properties of Polymer Composites. Composites 21(3), 255–262.
  • 15. Shah, K.J., Shukla, A.D., Shah, D.O., Imae, T., 2016. Effect of Organic Modifiers on Dispersion of Organoclay in Polymer Nanocomposites to Improve Mechanical Properties. Polymer 97, 525–532.
  • 16. Nascimento, R.A., de Souza, A.M.C., 2016. Mechanical Properties of Polyamide 12 After Exposed to Biodiesel; AIP Conference Proceedings, 1779, 070010.
  • 17. Xie, X.L., Li, R.K.Y., Liu, Q.X., Mai, Y.W., 2004. Structure-Property Relationships of In- situ PMMA Modified Nano-Sized Antimony Trioxide Filled Poly (Vinyl Chloride) Nanocomposites. Polymer, 45(8), 2793–2802.
  • 18. Qu, H., Wu, W., Zheng, Y., Xie, J., Xu, J., 2011. Synergistic Effects of Inorganic Tin Compounds and Sb2O3 on Thermal Properties and Flame Retardancy of Flexible Poly (vinyl chloride). Fire Safety Journal, 46(7), 462–467.
  • 19. Yurddaskal, M., Nil, M., Ozturk, Y., Celik, E., 2018. Synergetic Effect of Antimony Trioxide on the Flame Retardant and Mechanical Properties of Polymer Composites for Consumer Electronics Applications. Journal of Materials Science: Materials in Electronics, 29(6), 4557–4563.
  • 20. Yu, L., Wang, W., Xiao, W., 2004. The Effect of Decabromodiphenyl Oxide and Antimony Trioxide on the Flame Retardation of Ethylene-Propylene-Diene Copolymer/Polypropylene Blends, Polymer Degradation Stability, 86(1), 69–73.
  • 21. Ho, T.H., Hwang, H.J., Shieh, J.Y., Chung, M.C., 2009. Thermal, Physical and Flame- Retardant Properties of Phosphorus-Containing Epoxy Cured with Cyanate Ester, Reactive Functional Polymers, 69(3), 176–182.
  • 22. Duquesne, E., Moins, S., Alexandre, M., Dubois, P., 2007. How Can Nanohybrids Enhance Polyester/Sepiolite Nanocomposite Properties?, Macromolecular Chemistry Physics, 208(23), 2542–2550.

Polyamide 12/Antimony Trioxide/Sepiolite or Boron Composites: Mechanical Properties and Flame Retardancy

Yıl 2020, Cilt: 35 Sayı: 4, 1083 - 1090, 31.12.2020
https://doi.org/10.21605/cukurovaummfd.869179

Öz

This study reports on the mechanical and flame-retardancy properties of polyamide 12 (PA 12) based composites reinforced with antimony trioxide, sepiolite, or boron powders. These composites were fabricated by the twin-screw extruder and hot-press techniques. The microstructural characteristics and flame-retardancy of the PA 12-based composite samples were obtained by using a scanning electron microscope, a vertical UL-94 burning, and limiting oxygen index tests. The Shore-D hardness, Charpy impact, and tensile tests were conducted to reveal the mechanical performance of composites. The PA 12/antimony trioxide/sepiolite sample presented the best mechanical performance. The additions of antimony trioxide/boron into the PA 12 matrix gave the best contribution to the flame-retardancy.

Kaynakça

  • 1. Dasari, A., Yu, Z.Z., Cai, G.P., Mai, Y.W., 2013. Recent Developments in the Fire Retardancy of Polymeric Materials. Progress in Polymer Science, 38(9), 1357–1387.
  • 2. Li, F., Jianhuai, W., Jiongtian, L., Bingguo, W., Shuojiang, S., 2007. Preparation and Fire Retardancy of Antimony Oxide Nanoparticles/Mica Composition. Journal of Composite Materials, 41(12), 1487–1497.
  • 3. Hull, T.R., Witkowski, A., Hollingbery, L., 2011. Fire Retardant Action of Mineral Fillers. Polymer Degradation Stability, 96(8), 1462–1469.
  • 4. Lim, K.S., Bee, S.T., Sin, L.T., Tee, T.T., Ratnam, C.T., Hui, D., Rahmat, A.R., 2016. A Review of Application of Ammonium Polyphosphate as Intumescent Flame Retardant in Thermoplastic Composites, Composite Part B: Engineering, 84, 155–174.
  • 5. Chen, P,. Tang, M., Zhu, W., Yanga, L., Wen, S., Yan, C., Ji, Z., Nan, H., Shi, Y., 2018. Systematical Mechanism of Polyamide-12 Aging and Its Microstructural Evolution During Laser Sintering. Polymer Testing, 67, 370–379.
  • 6. Hongsrriphan, N., Patanatabutr, P., Nongyai, N., Pariyathada, N., Torudomsak, S., 2019. Mechanical and Thermal Properties of Blends Between Poly(Butylene Succinate) and Polyamide 12, Materials Today: Proceedings, 17, 1977–1986.
  • 7. Lao, S.C., Wu, C., Moon, T.J., Koo, J.H. Morgan, A., Pilato, L., Wissler, G., 2009. Flame-retardant Polyamide 11 and 12 Nanocomposites: Thermal and Flammability Properties. Journal of Composite Materials, 43(17), 1803–1818.
  • 8. Ruiz-Hitzky, E., Darder, M., Fernandes, F.M., Wicklein, B., Alcântara, A.C.S., Aranda, P., 2013. Fibrous Clays Based Bionanocomposites, Progress in Polymer Science, 38(10-11),1392–1414.
  • 9. L aoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.M., Dubois, P., 2009. New Prospects in Flame Retardant Polymer Materials: from Fundamentals to Nanocomposites. Materials Science Engineering R: Reports, 63(3), 100–125.
  • 10. Martín, C., Hunt, B.J., Ebdon, J.R., Ronda, J.C., Cadiz, V., 2006. Synthesis, Crosslinking and Flame Retardance of Polymers of Boron- Containing Difunctional Styrenic Monomers, Reactive Functional Polymers, 66(10), 1047–1054.
  • 11. Dogan, M., Unlu, M.S., 2014. Flame Retardant Effect of Boron Compounds on Red Phosphorus Containing Epoxy Resins, Polymer Degradation Stability, 99, 12–17.
  • 12. Xie, K., Gao, A., Zhang, Y., 2013. Flame Retardant Finishing of Cotton Fabric Based on Synergistic Compounds Containing Boron and Nitrogen, Carbohydrate Polymers 988(1), 706–710.
  • 13. Afkhami, M., Hassanpour, A., Fairweather, M., 2019. Effect of Reynolds Number on Particle Interaction and Agglomeration in Turbulent Channel Flow, Powder Technology, 343, 908–920.
  • 14. Pukánszky, B., 1990. Influence of Interface Interaction on the Ultimate Tensile Properties of Polymer Composites. Composites 21(3), 255–262.
  • 15. Shah, K.J., Shukla, A.D., Shah, D.O., Imae, T., 2016. Effect of Organic Modifiers on Dispersion of Organoclay in Polymer Nanocomposites to Improve Mechanical Properties. Polymer 97, 525–532.
  • 16. Nascimento, R.A., de Souza, A.M.C., 2016. Mechanical Properties of Polyamide 12 After Exposed to Biodiesel; AIP Conference Proceedings, 1779, 070010.
  • 17. Xie, X.L., Li, R.K.Y., Liu, Q.X., Mai, Y.W., 2004. Structure-Property Relationships of In- situ PMMA Modified Nano-Sized Antimony Trioxide Filled Poly (Vinyl Chloride) Nanocomposites. Polymer, 45(8), 2793–2802.
  • 18. Qu, H., Wu, W., Zheng, Y., Xie, J., Xu, J., 2011. Synergistic Effects of Inorganic Tin Compounds and Sb2O3 on Thermal Properties and Flame Retardancy of Flexible Poly (vinyl chloride). Fire Safety Journal, 46(7), 462–467.
  • 19. Yurddaskal, M., Nil, M., Ozturk, Y., Celik, E., 2018. Synergetic Effect of Antimony Trioxide on the Flame Retardant and Mechanical Properties of Polymer Composites for Consumer Electronics Applications. Journal of Materials Science: Materials in Electronics, 29(6), 4557–4563.
  • 20. Yu, L., Wang, W., Xiao, W., 2004. The Effect of Decabromodiphenyl Oxide and Antimony Trioxide on the Flame Retardation of Ethylene-Propylene-Diene Copolymer/Polypropylene Blends, Polymer Degradation Stability, 86(1), 69–73.
  • 21. Ho, T.H., Hwang, H.J., Shieh, J.Y., Chung, M.C., 2009. Thermal, Physical and Flame- Retardant Properties of Phosphorus-Containing Epoxy Cured with Cyanate Ester, Reactive Functional Polymers, 69(3), 176–182.
  • 22. Duquesne, E., Moins, S., Alexandre, M., Dubois, P., 2007. How Can Nanohybrids Enhance Polyester/Sepiolite Nanocomposite Properties?, Macromolecular Chemistry Physics, 208(23), 2542–2550.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ahmet Öztürk Bu kişi benim 0000-0002-5008-1406

Fırat Sarıbal Bu kişi benim 0000-0002-3894-5814

Şeyma Duman Bu kişi benim 0000-0002-6685-5656

Meral Akkoyun Bu kişi benim 0000-0002-8113-5534

İbrahim Şen Bu kişi benim 0000-0002-8765-6437

Didem Ovalı Bu kişi benim 0000-0002-7934-6535

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 4

Kaynak Göster

APA Öztürk, A., Sarıbal, F., Duman, Ş., Akkoyun, M., vd. (2020). Polyamide 12/Antimony Trioxide/Sepiolite or Boron Composites: Mechanical Properties and Flame Retardancy. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(4), 1083-1090. https://doi.org/10.21605/cukurovaummfd.869179
AMA Öztürk A, Sarıbal F, Duman Ş, Akkoyun M, Şen İ, Ovalı D. Polyamide 12/Antimony Trioxide/Sepiolite or Boron Composites: Mechanical Properties and Flame Retardancy. cukurovaummfd. Aralık 2020;35(4):1083-1090. doi:10.21605/cukurovaummfd.869179
Chicago Öztürk, Ahmet, Fırat Sarıbal, Şeyma Duman, Meral Akkoyun, İbrahim Şen, ve Didem Ovalı. “Polyamide 12/Antimony Trioxide/Sepiolite or Boron Composites: Mechanical Properties and Flame Retardancy”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, sy. 4 (Aralık 2020): 1083-90. https://doi.org/10.21605/cukurovaummfd.869179.
EndNote Öztürk A, Sarıbal F, Duman Ş, Akkoyun M, Şen İ, Ovalı D (01 Aralık 2020) Polyamide 12/Antimony Trioxide/Sepiolite or Boron Composites: Mechanical Properties and Flame Retardancy. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 4 1083–1090.
IEEE A. Öztürk, F. Sarıbal, Ş. Duman, M. Akkoyun, İ. Şen, ve D. Ovalı, “Polyamide 12/Antimony Trioxide/Sepiolite or Boron Composites: Mechanical Properties and Flame Retardancy”, cukurovaummfd, c. 35, sy. 4, ss. 1083–1090, 2020, doi: 10.21605/cukurovaummfd.869179.
ISNAD Öztürk, Ahmet vd. “Polyamide 12/Antimony Trioxide/Sepiolite or Boron Composites: Mechanical Properties and Flame Retardancy”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/4 (Aralık 2020), 1083-1090. https://doi.org/10.21605/cukurovaummfd.869179.
JAMA Öztürk A, Sarıbal F, Duman Ş, Akkoyun M, Şen İ, Ovalı D. Polyamide 12/Antimony Trioxide/Sepiolite or Boron Composites: Mechanical Properties and Flame Retardancy. cukurovaummfd. 2020;35:1083–1090.
MLA Öztürk, Ahmet vd. “Polyamide 12/Antimony Trioxide/Sepiolite or Boron Composites: Mechanical Properties and Flame Retardancy”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 35, sy. 4, 2020, ss. 1083-90, doi:10.21605/cukurovaummfd.869179.
Vancouver Öztürk A, Sarıbal F, Duman Ş, Akkoyun M, Şen İ, Ovalı D. Polyamide 12/Antimony Trioxide/Sepiolite or Boron Composites: Mechanical Properties and Flame Retardancy. cukurovaummfd. 2020;35(4):1083-90.