Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 167 - 172, 17.04.2022
https://doi.org/10.17567/ataunidfd.1013021

Öz

Kaynakça

  • 1. Pimentel W, Teixeira ML, Costa PP, Jorge MZ, Tiossi R. Predictable outcomes with porcelain laminate veneers: A clinical report. J Prosthodont. 2016;25(4):335-340. [Crossref]
  • 2. Yılmaz B, Yanıkoğlu N. Evaluation of marginal adaptation and fracture strength of different zirconia based crowns. Curr Res Dent Sci. 2021;31(2):247-255. [Crossref]
  • 3. Cantürk K, Karalar B, Sağsöz Ö, Seven N, Sağsöz NP, Bayındır YZ. The effect of different universal bonding agents on the bond strength of CAD/CAM ceramics repaired with composite resin. Curr Res Dent Sci. 2019;29(3):381-386. [Crossref]
  • 4. Shetty A, Kaiwar A, Shubhashini N, et al. Survival rates of porcelain laminate restoration based on different incisal preparation designs: An analysis. J Conserv Dent. 2011;14(1):10-15. [Crossref]
  • 5. Ozturk E, Bolay S. Survival of porcelain laminate veneers with different degrees of dentin exposure: 2-year clinical results. J Adhes Dent. 2014;16(5):481-489.
  • 6. Morimoto S, Albanesi RB, Sesma N, Agra CM, Braga MM. Main Clinical outcomes of feldspathic porcelain and glass-ceramic laminate veneers: A systematic review and meta-analysis of survival and complication rates. Int J Prosthodont. 2016;29(1):38-49. [Crossref]
  • 7. Obradović-Đuričić KB, Medić VB, Dodić SM, Đurišić SP, Jokić BM, Kuzmanović JM. Porcelain veneers-preparation design: A retrospective review. Hemijska industrija. 2014;68(2):179-192. [Crossref]
  • 8. Gresnigt MM, Kalk W, Özcan M. Clinical longevity of ceramic laminate veneers bonded to teeth with and without existing composite restorations up to 40 months. Clin Oral Investig. 2013;17(3):823-832. [Crossref]
  • 9. Belli R, Geinzer E, Muschweck A, Petschelt A, Lohbauer U. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater. 2014;30(4):424-432. [Crossref]
  • 10. Hamza TA, Sherif RM. Fracture resistance of monolithic glass-ceramics versus bilayered zirconia-based restorations. J Prosthodont. 2019;28(1):259-264. [Crossref]
  • 11. Rinke S, Pabel AK, Rödiger M, Ziebolz D. Chairside fabrication of an all-ceramic partial crown using a zirconia-reinforced lithium silicate ceramic. Case Rep Dent. 2016;2016:1354186. [Crossref]
  • 12. Albakry M, Guazzato M, Swain MV. Influence of hot pressing on the microstructure and fracture toughness of two pressable dental glass-ceramics. J Biomed Mater Res B Appl Biomater. 2004;71(1):99-107. [Crossref]
  • 13. Vargas MA, Bergeron C, Diaz-Arnold A. Cementing allceramic restorations: recommendations for success. J Am Dent Assoc. 2011;142(Suppl 2):S20-24. [Crossref]
  • 14. Lima RBW, Barreto SC, Alfrisany NM, Porto TS, De Souza GM, De Goes MF. Effect of silane and MDP-based primers on physico-chemical properties of zirconia and its bond strength to resin cement. Dent Mater. 2019;35(11):1557-1567. [Crossref]
  • 15. Karaokutan I, Yilmaz Savas T, Aykent F, Ozdere E. Color stability of CAD/CAM fabricated inlays after accelerated artificial aging. J Prosthodont. 2016;25(6):472-477. [Crossref]
  • 16. Lu H, Powers JM. Color stability of resin cements after accelerated aging. Am J Dent. 2004;17:354-358.
  • 17. Pissaia JF, Correr GM, Gonzaga CC, Cunha LF. Influence of shade, curing mode, and aging on the color stability of resin cements. Braz J Oral Sci. 2015;14(4):272-275. [Crossref]
  • 18. Bayne SC, Ferracane JL, Marshall GW, Marshall SJ, van Noort R. The evolution of dental materials over the past century: Silver and gold to tooth color and beyond. J Dent Res. 2019;98(3):257-265. [Crossref]
  • 19. Hallmann L, Ulmer P, Gerngross MD, et al. Properties of hot-pressed lithium silicate glass-ceramics. Dent Mater. 2019;35(5):713-729. [Crossref]
  • 20. Kramer N, Lohbauer U, Frankenberger R. Adhesive luting of indirect restorations. Am J Dent. 2000;13:60-76.
  • 21. Al-Harthi AA, Aljoudi MH, Almaliki MN, El-Banna KA. Laboratory study of micro-shear bond strength of two resin cements to leucite ceramics using different ceramic primers. J Contemp Dent Pract. 2018;19(8):918-924. [Crossref]
  • 22. Lee SM, Choi YS. Effect of ceramic material and resin cement systems on the color stability of laminate veneers after accelerated aging. J Prosthet Dent. 2018;120(1):99-106. [Crossref]
  • 23. Aykent F, Usumez A, Ozturk AN, et al. Effect of provisional restorations on the final bond strengths of porcelain laminate veneers. J Oral Rehabil. 2005;32(1):46-50. [Crossref]
  • 24. Ratnaweera PM, Fukagawa N, Tsubota Y, Fukushima S. Microtensile bond strength of porcelain laminate veneers bonded to fluorosed teeth. J Prosthodont. 2009;18(3):205-210. [Crossref]
  • 25. Kukiattrakoon B, Thammasitboon K. Optimal acidulated phosphate fluoride gel etching time for surface treatment of feldspathic porcelain: on shear bond strength to resin composite. Eur J Dent. 2012;6(1):63-69. [Crossref]
  • 26. Tian T, Tsoi JK, Matinlinna JP, Burrow MF. Aspects of bonding between resin luting cements and glass ceramic materials. Dent Mater. 2014;30(7):147-162. [Crossref]
  • 27. Puppin-Rontani J, Sundfeld D, Costa AR, et al. Effect of hydrofluoric acid concentration and etching time on bond strength to lithium disilicate glass ceramic. Oper Dent. 2017;42(6):606-615. [Crossref]
  • 28. Straface A, Rupp L, Gintaute A, Fischer J, Zitzmann NU, Rohr N. HF etching of CAD/CAM materials: influence of HF concentration and etching time on shear bond strength. Head Face Med. 2019;15(1):21. [Crossref]
  • 29. Nagai T, Kawamoto Y, Kakehashi Y, Matsumura H. Adhesive bonding of a lithium disilicate ceramic material with resinbased luting agents. J Oral Rehabil. 2005;32(8):598-605. [Crossref]
  • 30. Yoshida F, Tsujimoto A, Ishii R, et al. Influence of surface treatment of contaminated lithium disilicate and leucite glass ceramics on surface free energy and bond strength of universal adhesives. Dent Mater J. 2015;34(6):855-862. [Crossref]
  • 31. Hooshmand T, Rostami G, Behroozibakhsh M, Fatemi M, Keshvad A, van Noort R. Interfacial fracture toughness of different resin cements bonded to a lithium disilicate glass ceramic. J Dent. 2012;40(2):139-145. [Crossref]
  • 32. Maruo Y, Nishigawa G, Irie M, Yoshihara K, Matsumoto T, Minagi S. Does acid etching morphologically and chemically affect lithium disilicate glass ceramic surfaces? J Appl Biomater Funct Mater. 2017;15(1):93-100. [Crossref]
  • 33. Bajraktarova-Valjakova E, Korunoska-Stevkovska V, Georgieva S, et al. Hydrofluoric acid: Burns and systemic toxicity, protective measures, immediate and hospital medical treatment. Open Access Maced J Med Sci. 2018;6(11):2257-2269. [Crossref]
  • 34. Shimada Y, Yamaguchi S, Tagami J. Micro-shear bond strength of dualcured resin cement to glass ceramics. Dent Mater. 2002;18(5):380-388. [Crossref]
  • 35. Yildirim G. Effect of different acid treatments on the shear bond strength of computer-aided design and manufacturing (CAD-CAM) ceramics for dental applications. J Ceram Sci Technol. 2018;9(4):391-396.
  • 36. Peumans M, Valjakova EB, De Munck J, Mishevska CB, Van Meerbeek B. Bonding effectiveness of luting composites to different CAD/CAM materials. J Adhes Dent. 2016;18(4):289-302.

FARKLI ŞEKILLERDE POLIMERIZE OLAN IKI REZIN SIMANIN DEĞIŞIK SERAMIK SISTEMLER ILE ÜRETILEN LAMINATE VENEERLERIN BAĞLANMA DAYANIMLARINA ETKISI

Yıl 2022, , 167 - 172, 17.04.2022
https://doi.org/10.17567/ataunidfd.1013021

Öz

Amaç: Bu çalışmanın amacı; ışıkla ve dual olarak polimerize olan iki rezin simanın farklı seramik sistemleri ile üretilmiş laminate veneerlerin mikroçekme bağlanma dayanımları üzerindeki etkilerini karşılaştırmalı olarak incelemektir.
Yöntemler: Altmış maksiller santral diş mine-sement birleşiminin 2 mm apikalinden akrilik rezin içine gömüldü ve laminate veneer preparasyonları tamamlandı. Restorasyonların mum modelajları 3B yazıcı yardımıyla üretildi. Dişler rastgele 3 gruba ayrıldı (n = 20) ve lityum disilikat, yüksek yoğunluklu mikronize lityum disilikat ve zirkonya ile güçlendirilmiş lityum silikat seramiklerden restorasyonlar üretildi. Seramik örnekler ayrıca rezin siman tipine göre ışıkla polimerize ve dual polimerize rezin siman olarak 2 alt gruba (n = 10) ayrıldılar ve simantasyonları yapıldı. Daha sonra dişler 1 yıllık klinik kullanıma eşdeğer hızlandırılmış yapay yaşlandırmaya maruz bırakıldı. Her dişin kronunun tam ortasından 1’er tane mikrobar elde edildi (n = 10) ve örneklere kopma gerçekleşene kadar 0,5 mm/dk yükleme hızında çekme kuvveti uygulandı. İstatistiksel analizler iki yönlü varyans analizi ve Tukey's Post-hoc testi kullanılarak yapıldı (P ≤ ,05).
Bulgular: Seramik ve rezin siman alt grubundaki örnekler karşılaştırıldığında aralarında istatistiksel olarak anlamlı fark bulunmuştur (P < ,001). Zirkonya ile güçlendirilmiş lityum silikat seramiklerin mikroçekme bağlanma dayanımları hem ışıkla polimerize olan hem de dual polimerize olan rezin siman gruplarında lityum disilikat seramiklere göre anlamlı seviyede düşük bulunmuştur (P < ,001). Dual polimerize olan rezin siman grubunun bağlanma dayanımı, ışıkla polimerize olan rezin siman grubundan istatistiksel olarak anlamlı seviyede düşük bulunmuştur (P < ,001).
Sonuç: Lityum disilikat laminate veneerler, zirkonya ile güçlendirilmiş lityum silikat veneerlerden daha yüksek bağlanma dayanımı göstermiştir. Yine ışıkla polimerize olan rezin siman, dual polimerize olan rezin simana göre daha etkili bağlanma dayanımı sağlamıştır.
Anahtar Kelimeler: Laminate veneer, lityum disilikat, mikro gerilim bağlanma dayanımı, rezin siman, zirkonya ile güçlendirilmiş lityum silikat

Abstract
Objective: The aim of this study was to compare the effects of two resin cements polymerized in different ways on the microtensile bond strength of laminate veneers produced with different ceramic materials.
Methods: Sixty maxillary central incisor teeth were embedded in an acrylic resin 2 mm below the enamel-cement junction and laminate veneer preparations were completed. The wax models of the restorations were produced with a 3D printer. The teeth were randomly divided into 3 groups (n = 20) and restorations were produced with lithium disilicate, high-density micronized lithium disilicate and zirconia reinforced lithium silicate ceramics. Ceramic specimens were further divided into two groups (n = 10) according to the resin cement type as light-cure and dual-cure resin cement, and their cementation was performed. The teeth were then subjected to accelerated artificial aging equivalent to 1 year of clinical use. One microbar was obtained from the middle of the crown of each tooth
(n = 10) and tensile force was applied to the specimens at a loading speed of 0.5 mm/min until the fracture occurred. Statistical analyzes were performed using two-way analysis of variance and Tukey's Post-hoc test (P ≤ .05).
Results: Statistically significant difference was found between the ceramic type and resin cement subgroups (P < .001). The bond strength of laminate veneers produced with zirconia reinforced lithium silicate ceramic group was found significantly lower than that of lithium disilicate ceramic’s groups in both light-cured and dual-cured resin cement groups (P < .001). The dual-cure resin cement groups showed statistically significantly lower bond strength than the light-cure resin cement groups (P < .001).
Conclusion: The laminate veneers fabricated from lithium disilicate ceramics showed higher bond strength than that of zirconia reinforced lithium silicate veneers. Also, the light-cure resin cement provided more effective bond strength than dual-cure resin cement.
Keywords: Laminate veneer, lithium disilicate, microtensile bond strength, resin cement, zirconia reinforced lithium silicate

Kaynakça

  • 1. Pimentel W, Teixeira ML, Costa PP, Jorge MZ, Tiossi R. Predictable outcomes with porcelain laminate veneers: A clinical report. J Prosthodont. 2016;25(4):335-340. [Crossref]
  • 2. Yılmaz B, Yanıkoğlu N. Evaluation of marginal adaptation and fracture strength of different zirconia based crowns. Curr Res Dent Sci. 2021;31(2):247-255. [Crossref]
  • 3. Cantürk K, Karalar B, Sağsöz Ö, Seven N, Sağsöz NP, Bayındır YZ. The effect of different universal bonding agents on the bond strength of CAD/CAM ceramics repaired with composite resin. Curr Res Dent Sci. 2019;29(3):381-386. [Crossref]
  • 4. Shetty A, Kaiwar A, Shubhashini N, et al. Survival rates of porcelain laminate restoration based on different incisal preparation designs: An analysis. J Conserv Dent. 2011;14(1):10-15. [Crossref]
  • 5. Ozturk E, Bolay S. Survival of porcelain laminate veneers with different degrees of dentin exposure: 2-year clinical results. J Adhes Dent. 2014;16(5):481-489.
  • 6. Morimoto S, Albanesi RB, Sesma N, Agra CM, Braga MM. Main Clinical outcomes of feldspathic porcelain and glass-ceramic laminate veneers: A systematic review and meta-analysis of survival and complication rates. Int J Prosthodont. 2016;29(1):38-49. [Crossref]
  • 7. Obradović-Đuričić KB, Medić VB, Dodić SM, Đurišić SP, Jokić BM, Kuzmanović JM. Porcelain veneers-preparation design: A retrospective review. Hemijska industrija. 2014;68(2):179-192. [Crossref]
  • 8. Gresnigt MM, Kalk W, Özcan M. Clinical longevity of ceramic laminate veneers bonded to teeth with and without existing composite restorations up to 40 months. Clin Oral Investig. 2013;17(3):823-832. [Crossref]
  • 9. Belli R, Geinzer E, Muschweck A, Petschelt A, Lohbauer U. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater. 2014;30(4):424-432. [Crossref]
  • 10. Hamza TA, Sherif RM. Fracture resistance of monolithic glass-ceramics versus bilayered zirconia-based restorations. J Prosthodont. 2019;28(1):259-264. [Crossref]
  • 11. Rinke S, Pabel AK, Rödiger M, Ziebolz D. Chairside fabrication of an all-ceramic partial crown using a zirconia-reinforced lithium silicate ceramic. Case Rep Dent. 2016;2016:1354186. [Crossref]
  • 12. Albakry M, Guazzato M, Swain MV. Influence of hot pressing on the microstructure and fracture toughness of two pressable dental glass-ceramics. J Biomed Mater Res B Appl Biomater. 2004;71(1):99-107. [Crossref]
  • 13. Vargas MA, Bergeron C, Diaz-Arnold A. Cementing allceramic restorations: recommendations for success. J Am Dent Assoc. 2011;142(Suppl 2):S20-24. [Crossref]
  • 14. Lima RBW, Barreto SC, Alfrisany NM, Porto TS, De Souza GM, De Goes MF. Effect of silane and MDP-based primers on physico-chemical properties of zirconia and its bond strength to resin cement. Dent Mater. 2019;35(11):1557-1567. [Crossref]
  • 15. Karaokutan I, Yilmaz Savas T, Aykent F, Ozdere E. Color stability of CAD/CAM fabricated inlays after accelerated artificial aging. J Prosthodont. 2016;25(6):472-477. [Crossref]
  • 16. Lu H, Powers JM. Color stability of resin cements after accelerated aging. Am J Dent. 2004;17:354-358.
  • 17. Pissaia JF, Correr GM, Gonzaga CC, Cunha LF. Influence of shade, curing mode, and aging on the color stability of resin cements. Braz J Oral Sci. 2015;14(4):272-275. [Crossref]
  • 18. Bayne SC, Ferracane JL, Marshall GW, Marshall SJ, van Noort R. The evolution of dental materials over the past century: Silver and gold to tooth color and beyond. J Dent Res. 2019;98(3):257-265. [Crossref]
  • 19. Hallmann L, Ulmer P, Gerngross MD, et al. Properties of hot-pressed lithium silicate glass-ceramics. Dent Mater. 2019;35(5):713-729. [Crossref]
  • 20. Kramer N, Lohbauer U, Frankenberger R. Adhesive luting of indirect restorations. Am J Dent. 2000;13:60-76.
  • 21. Al-Harthi AA, Aljoudi MH, Almaliki MN, El-Banna KA. Laboratory study of micro-shear bond strength of two resin cements to leucite ceramics using different ceramic primers. J Contemp Dent Pract. 2018;19(8):918-924. [Crossref]
  • 22. Lee SM, Choi YS. Effect of ceramic material and resin cement systems on the color stability of laminate veneers after accelerated aging. J Prosthet Dent. 2018;120(1):99-106. [Crossref]
  • 23. Aykent F, Usumez A, Ozturk AN, et al. Effect of provisional restorations on the final bond strengths of porcelain laminate veneers. J Oral Rehabil. 2005;32(1):46-50. [Crossref]
  • 24. Ratnaweera PM, Fukagawa N, Tsubota Y, Fukushima S. Microtensile bond strength of porcelain laminate veneers bonded to fluorosed teeth. J Prosthodont. 2009;18(3):205-210. [Crossref]
  • 25. Kukiattrakoon B, Thammasitboon K. Optimal acidulated phosphate fluoride gel etching time for surface treatment of feldspathic porcelain: on shear bond strength to resin composite. Eur J Dent. 2012;6(1):63-69. [Crossref]
  • 26. Tian T, Tsoi JK, Matinlinna JP, Burrow MF. Aspects of bonding between resin luting cements and glass ceramic materials. Dent Mater. 2014;30(7):147-162. [Crossref]
  • 27. Puppin-Rontani J, Sundfeld D, Costa AR, et al. Effect of hydrofluoric acid concentration and etching time on bond strength to lithium disilicate glass ceramic. Oper Dent. 2017;42(6):606-615. [Crossref]
  • 28. Straface A, Rupp L, Gintaute A, Fischer J, Zitzmann NU, Rohr N. HF etching of CAD/CAM materials: influence of HF concentration and etching time on shear bond strength. Head Face Med. 2019;15(1):21. [Crossref]
  • 29. Nagai T, Kawamoto Y, Kakehashi Y, Matsumura H. Adhesive bonding of a lithium disilicate ceramic material with resinbased luting agents. J Oral Rehabil. 2005;32(8):598-605. [Crossref]
  • 30. Yoshida F, Tsujimoto A, Ishii R, et al. Influence of surface treatment of contaminated lithium disilicate and leucite glass ceramics on surface free energy and bond strength of universal adhesives. Dent Mater J. 2015;34(6):855-862. [Crossref]
  • 31. Hooshmand T, Rostami G, Behroozibakhsh M, Fatemi M, Keshvad A, van Noort R. Interfacial fracture toughness of different resin cements bonded to a lithium disilicate glass ceramic. J Dent. 2012;40(2):139-145. [Crossref]
  • 32. Maruo Y, Nishigawa G, Irie M, Yoshihara K, Matsumoto T, Minagi S. Does acid etching morphologically and chemically affect lithium disilicate glass ceramic surfaces? J Appl Biomater Funct Mater. 2017;15(1):93-100. [Crossref]
  • 33. Bajraktarova-Valjakova E, Korunoska-Stevkovska V, Georgieva S, et al. Hydrofluoric acid: Burns and systemic toxicity, protective measures, immediate and hospital medical treatment. Open Access Maced J Med Sci. 2018;6(11):2257-2269. [Crossref]
  • 34. Shimada Y, Yamaguchi S, Tagami J. Micro-shear bond strength of dualcured resin cement to glass ceramics. Dent Mater. 2002;18(5):380-388. [Crossref]
  • 35. Yildirim G. Effect of different acid treatments on the shear bond strength of computer-aided design and manufacturing (CAD-CAM) ceramics for dental applications. J Ceram Sci Technol. 2018;9(4):391-396.
  • 36. Peumans M, Valjakova EB, De Munck J, Mishevska CB, Van Meerbeek B. Bonding effectiveness of luting composites to different CAD/CAM materials. J Adhes Dent. 2016;18(4):289-302.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Hekimliği
Bölüm Araştırma Makalesi
Yazarlar

Işıl Filiz Aykent2 Karaokutan Bu kişi benim

Filiz Aykent Bu kişi benim

Yayımlanma Tarihi 17 Nisan 2022
Gönderilme Tarihi 28 Mayıs 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

AMA Karaokutan IFA, Aykent F. FARKLI ŞEKILLERDE POLIMERIZE OLAN IKI REZIN SIMANIN DEĞIŞIK SERAMIK SISTEMLER ILE ÜRETILEN LAMINATE VENEERLERIN BAĞLANMA DAYANIMLARINA ETKISI. Curr Res Dent Sci. Nisan 2022;32(2):167-172. doi:10.17567/ataunidfd.1013021

Current Research in Dental Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

29936