Araştırma Makalesi
BibTex RIS Kaynak Göster

DİŞ FIRÇALAMANIN ÇOCUK DİŞ HEKİMLİĞİNDE KULLANILAN FARKLI RESTORATİF MATERYALLERDE YÜZEY PÜRÜZLÜLÜĞÜ ÜZERİNE ETKİSİ

Yıl 2022, Cilt: 32 Sayı: 1, 23 - 28, 15.02.2022
https://doi.org/10.17567/ataunidfd.1013048

Öz

Amaç: Yüzey pürüzlülüğü, kullanılan materyallerin dayanıklılık ve uzun dönem performanslarını doğrudan etkilemektedir. Diş fırçalamanın abraziv etkisi de restoratif materyallerin yüzey pürüzlülüğünde etkendir. Çalışmamızın amacı, diş fırçalamanın çocuk diş hekimliğinde sıklıkla kullanılan rezin modifiye cam iyonomer siman, kompomer ve kompozit materyallerinin yüzey pürüzlülüğü üzerine etkisinin incelenmesidir.
Yöntemler: Çalışmamızda rezin modifiye cam iyonomer siman [Fuji II LC (GC Corp., Tokyo, Japonya)], kompomer [Dyract XP (Dentsply detrey, Konstanz, Almanya)] ve suprananofil yapıda kompozit rezin [Palfique Estelite Paste (Tokuyama Dental Co., Tokyo, Japonya)] kullanıldı. Üç farklı restoratif materyalden diskler hazırlanarak 3 farklı deney grubu oluşturuldu. Her grup için 20 örnek hazırlandıktan sonra, örneklerin yüzey pürüzlülük değerleri profilometre cihazı kullanılarak ölçüldü. Ardından fırçalama simülatörü kullanılarak, örneklere 1 yıllık diş fırçalamaya eşdeğer fırçalama siklusu uygulandı ve fırçalama sonrası yüzey pürüzlülük değerleri kaydedilerek, fırçalama öncesi ve sonrası yüzey pürüzlülük değerleri karşılaştırıldı. Verilerin istatistiksel değerlendirmesi, tek yönlü varyans analizi ve Tamhane’s T2 çoklu karşılaştırma testi ile yapıldı (P < ,05).
Bulgular: 1 yıllık fırçalama sonucunda, rezin modifiye cam iyonomer siman grubunda kompomer ve kompozit gruplarına göre istatistiksel olarak anlamlı düzeyde daha fazla yüzey pürüzlülüğü artışı gözlendi (P < ,05). Ancak kompozit ve kompomer grupları arasında yüzey pürüzlülüğü değişimi açısından anlamlı fark gözlenmedi (P > ,05). Bir yıllık fırçalamanın ardından rezin modifiye cam iyonomer simanların klinik açıdan pürüzlü yüzey gösterdikleri ve plak birikimi açısından risk oluşturabileceği gözlendi.
Sonuç: Çocuk diş hekimliğinde restoratif tedavi amacıyla rezin modifiye cam iyonomer simanlar kullanıldığında, düzenli aralıklarla kontrollerin yapılması ve oluşabilecek yüzey pürüzlülüğünün uygun bitirme ve cila sistemleriyle azaltılması önemlidir.
Anahtar kelimeler: Çocuk diş hekimliği, dental materyaller, diş fırçalama, yüzey özellikleri

Abstract
Objective: Surface roughness, directly affects the durability and long-term performance of the materials used. The abrasive effect of tooth brushing can impact the surface roughness of the materials. Our study aimed to examine the effect of tooth brushing on the surface roughness of resin-modified glass ionomer cement, compomer, and composite, which are frequently used in pediatric dentistry.
Methods: Resin-modified glass ionomer cement [Fuji II LC (GC Corp., Tokyo, Japan)], compomer [Dyract XP (Dentsply detrey, Konstanz, Germany)] and supra-nano filled resin composite; [Palfique Estelite Paste (Tokuyama Dental Co., Tokyo, Japan)] were used. Three different experimental groups were formed by preparing discs from the three different restorative materials. After preparing 20 samples for each group, the surface roughness values of the samples were measured using a profilometer device. Then, using a brushing simulator, corresponding to 1 year of brushing were applied to the samples, and the surface roughness values after brushing were recorded and the surface roughness values before and after brushing were compared. The results were statistically evaluated by one-way analysis of variance and Tamhane’s T2 multiple comparison test (P < .05).
Results: As a result of brushing for 1 year, statistically significantly higher surface roughness change were observed in the resin-modified glass ionomer cement group in comparison to the compomer and composite groups (P < ,05). But no statistically significant difference was observed in the surface roughness change between the composite and compomer groups (P > ,05). After 1 year of brushing, the resin-modified glass ionomer cements were found to have a clinically rough surface and could pose a risk in terms of plaque accumulation.
Conclusion: When using resin-modified glass ionomer cements for restorative treatment in pediatric dentistry, it is important to use appropriate finishing and polishing systems and to regularly check the treated teeth to reduce the surface roughness that may occur.
Keywords: Pediatric dentistry, dental materials, toothbrushing, surface properties

Kaynakça

  • 1. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ. 2005;83(9):661-669.
  • 2. Soliman HAN, Elkholany NR, Hamama HH, El-Sharkawy FM, Mahmoud SH, Comisi JC. Effect of different polishing systems on the surface roughness and gloss of novel nanohybrid resin composites. Eur J Dent. 2021;15(2):259-265.
  • 3. Siokis V, Michailidis T, Kotsanos N. Tooth-coloured materials for class II restorations in primary molars: systematic review and meta-analysis. Eur Arch Paediatr Dent. 2021;22(6):1003-1013.
  • 4. Pacifici E, Bossù M, Giovannetti A, La Torre G, Guerra F, Polimeni A. Surface roughness of glass ionomer cements indicated for uncooperative patients according to surface protection treatment. Ann Stomatol (Roma). 2014;4(3-4):250-258.
  • 5. Kakaboura A, Fragouli M, Rahiotis C, Silikas N. Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. J Mater Sci Mater Med. 2007;18(1):155-163.
  • 6. Lee YK, Lu H, Oguri M, Powers JM. Changes in gloss after simulated generalized wear of composite resins. J Prosthet Dent. 2005;94(4):370-376.
  • 7. Somacal DC, Manfroi FB, Monteiro M, et al. Effect of ph cycling followed by simulated toothbrushing on the surface roughness and bacterial adhesion of bulk-fill composite resins. Oper Dent. 2020;45(2):209-218.
  • 8. Shimokawa C, Giannini M, André CB, et al. In vitro evaluation of surface properties and wear resistance of conventional and bulk-fill resin-based composites after brushing with a dentifrice. Oper Dent. 2019;44(6):637-647.
  • 9. Takahashi R, Jin J, Nikaido T, Tagami J, Hickel R, Kunzelmann KH. Surface characterization of current composites after toothbrush abrasion. Dent Mater J. 2013;32(1):75-82.
  • 10. Sundell SO, Klein H. Toothbrushing behavior in children: a study of pressure and stroke frequency. Pediatr Dent. 1982;4(3):225-227.
  • 11. Oliveira GUd, Mondelli RFL, Charantola Rodrigues M, Franco EB, Ishikiriama SK, Wang L. Impact of filler size and distribution on roughness and wear of composite resin after simulated toothbrushing. J Appl Oral Sci. 2012;20(5):510-516.
  • 12. Hussainy SN, Nasim I, Thomas T, Ranjan M. Clinical performance of resin-modified glass ionomer cement, flowable composite, and polyacid-modified resin composite in noncarious cervical lesions: One-year follow-up. J Conserv Dent. 2018;21(5):510-515.
  • 13. Poorzandpoush K, Omrani LR, Jafarnia SH, Golkar P, Atai M. Effect of addition of nano hydroxyapatite particles on wear of resin modified glass ionomer by tooth brushing simulation. J Clin Exp Dent. 2017;9(3):e372-e376.
  • 14. Pala K, Tekçe N, Karakuyu H, Özel E. İki farklı diş macununun farklı restoratif materyallerin yüzey pürüzlülüğü üzerine etkisi. J Dent Fac Atatürk Uni. 2016;26(3):399-406.
  • 15. Atalı P, Öksüz M, Topbaşı F. Fırçalamanın ve beyazlatıcılı diş macunların kompozitlerin yüzey özelliklerine etkisi. J Dent Fac Atatürk Uni. 2014;24(1):22-32.
  • 16. Dos Santos JH, Silva NL, Gomes MG, Paschoal MA, Gomes IA. Whitening toothpastes effect on nanoparticle resin composite roughness after a brushing challenge: An in vitro study. J Clin Exp Dent. 2019;11(4):334-339.
  • 17. Mondelli RFL, Wang L, Garcia FCP, et al. Evaluation of weight loss and surface roughness of compomers after simulated toothbrushing abrasion test. J Appl Oral Sci. 2005;13(2):131-135.
  • 18. Nayyer M, Zahid S, Hassan SH, et al. Comparative abrasive wear resistance and surface analysis of dental resin-based materials. Eur J Dent. 2018;12(1):57-66.
  • 19. O’Neill C, Kreplak L, Rueggeberg FA, Labrie D, Shimokawa CAK, Price RB. Effect of tooth brushing on gloss retention and surface roughness of five bulk-fill resin composites. J Esthet Restor Dent. 2018;30(1):59-69.
  • 20. Roselino LDMR, Chinelatti MA, Alandia-Román CC, Pires-de-Souza FDCP. Effect of brushing time and dentifrice abrasiveness on color change and surface roughness of resin composites. Braz Dent J. 2015;26(5):507-513.
  • 21. Kantovitz KR, Fernandes FP, Feitosa IV, et al. TiO(2) nanotubes improve physico-mechanical properties of glass ionomer cement. Dent Mater. 2020;36(3):85-92.
  • 22. Goldstein GR, Lerner T. The effect of toothbrushing on a hybrid composite resin. J Prosthet Dent. 1991;66(4):498-500.
  • 23. Daud A, Adams AJ, Shawkat A, et al. Effects of toothbrushing on surface characteristics of microhybrid and nanofilled resin composites following different finishing and polishing procedures. J Dent. 2020;99:103376.
  • 24. Ömürlü H, Arısu HD, Eligüzeloğlu E, Üçtaşlı MB, Bala O. Gazi üniversitesi diş hekimliği fakültesi diş hastalıkları ve tedavisi anabilim dalına başvuran hastaların direkt restorasyonlarının klinik başarısının değerlendirilmesi. GÜ Diş Hek Fak Derg. 2011;28(1):23-28.
  • 25. Lang T, Staufer S, Jennes B, Gaengler P. Clinical validation of robot simulation of toothbrushing-comparative plaque removal efficacy. BMC Oral Health. 2014;14(1):1-9.
  • 26. Attin T, Vataschki M, Hellwig E. Properties of resin-modified glass-ionomer restorative materials and two polyacid-modified resin composite materials. Quintessence Int. 1996;27(3):203-209.
  • 27. Uno S, Finger WJ, Fritz U. Long-term mechanical characteristics of resin-modified glass ionomer restorative materials. Dent Mater. 1996;12(1):64-69.
  • 28. Momoi Y, Hirosaki K, Kohno A, McCabe JF. In vitro toothbrush-dentifrice abrasion of resin-modified glass ionomers. Dent Mater. 1997;13(2):82-88.
  • 29. Kaur S, Makkar S, Kumar R, Pasricha S, Gupta P. Comparative evaluation of surface properties of enamel and different esthetic restorative materials under erosive and abrasive challenges: An in vitro study. Indian J Dent. 2015;6(4):172-180.
  • 30. El-Kalla IH, García-Godoy F. Mechanical properties of compomer restorative materials. Oper Dent. 1999;24(1):2-8.
  • 31. Frazier KB, Rueggeberg FA, Mettenburg DJ. Comparison of wear-resistance of Class V restorative materials. J Esthet Dent. 1998;10(6):309-314.
  • 32. Chinelatti MA, Ramos RP, Chimello DT, Palma-Dibb RG. Clinical performance of a resin-modified glass-ionomer and two polyacid-modified resin composites in cervical lesions restorations: 1-year follow-up. J Oral Rehabil. 2004;31(3):251-257.
  • 33. Bayne SC. Dental biomaterials: where are we and where are we going? J Dent Educ. 2005;69(5):571-585.
  • 34. Say EC, Yurdagüven H, Yaman BC, Özer F. Surface roughness and morphology of resin composites polished with two-step polishing systems. Dent Mater J. 2014;33(3):332-342.
  • 35. AlAli M, Silikas N, Satterthwaite J. The effects of toothbrush wear on the surface roughness and gloss of resin composites with various types of matrices. Dent J. 2021;9(1):8.
  • 36. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000;16(2):129-138.
  • 37. Francisconi LF, Honório HM, Rios D, Magalhães AC, Machado MA, Buzalaf MA. Effect of erosive pH cycling on different restorative materials and on enamel restored with these materials. Oper Dent. 2008;33(2):203-208.
  • 38. Demirci M, Yıldız E, Uysal O. Comparative clinical evaluation of different treatment approaches using a microfilled resin composite and a compomer in Class III cavities: two-year results. Oper Dent. 2008;33(1):7-14.
  • 39. Lund R, Sehn F, Piva E, et al. Clinical performance and wear resistance of two compomers in posterior occlusal restorations of permanent teeth: Six-year follow-up. Oper Dent. 2007;32(2):118-123.
  • 40. Eren MM, Ozan G, Erdemir U, Vatansever C. Streptococcus Mutans adhesion to dental restorative materials after polishing with various systems: A Confocal Microscopy study. Acta Microscópica. 2021;30(1):54-64.
  • 41. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997;13(4):258-269.
  • 42. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol. 1990;17(3):138-144.
Yıl 2022, Cilt: 32 Sayı: 1, 23 - 28, 15.02.2022
https://doi.org/10.17567/ataunidfd.1013048

Öz

Kaynakça

  • 1. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ. 2005;83(9):661-669.
  • 2. Soliman HAN, Elkholany NR, Hamama HH, El-Sharkawy FM, Mahmoud SH, Comisi JC. Effect of different polishing systems on the surface roughness and gloss of novel nanohybrid resin composites. Eur J Dent. 2021;15(2):259-265.
  • 3. Siokis V, Michailidis T, Kotsanos N. Tooth-coloured materials for class II restorations in primary molars: systematic review and meta-analysis. Eur Arch Paediatr Dent. 2021;22(6):1003-1013.
  • 4. Pacifici E, Bossù M, Giovannetti A, La Torre G, Guerra F, Polimeni A. Surface roughness of glass ionomer cements indicated for uncooperative patients according to surface protection treatment. Ann Stomatol (Roma). 2014;4(3-4):250-258.
  • 5. Kakaboura A, Fragouli M, Rahiotis C, Silikas N. Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. J Mater Sci Mater Med. 2007;18(1):155-163.
  • 6. Lee YK, Lu H, Oguri M, Powers JM. Changes in gloss after simulated generalized wear of composite resins. J Prosthet Dent. 2005;94(4):370-376.
  • 7. Somacal DC, Manfroi FB, Monteiro M, et al. Effect of ph cycling followed by simulated toothbrushing on the surface roughness and bacterial adhesion of bulk-fill composite resins. Oper Dent. 2020;45(2):209-218.
  • 8. Shimokawa C, Giannini M, André CB, et al. In vitro evaluation of surface properties and wear resistance of conventional and bulk-fill resin-based composites after brushing with a dentifrice. Oper Dent. 2019;44(6):637-647.
  • 9. Takahashi R, Jin J, Nikaido T, Tagami J, Hickel R, Kunzelmann KH. Surface characterization of current composites after toothbrush abrasion. Dent Mater J. 2013;32(1):75-82.
  • 10. Sundell SO, Klein H. Toothbrushing behavior in children: a study of pressure and stroke frequency. Pediatr Dent. 1982;4(3):225-227.
  • 11. Oliveira GUd, Mondelli RFL, Charantola Rodrigues M, Franco EB, Ishikiriama SK, Wang L. Impact of filler size and distribution on roughness and wear of composite resin after simulated toothbrushing. J Appl Oral Sci. 2012;20(5):510-516.
  • 12. Hussainy SN, Nasim I, Thomas T, Ranjan M. Clinical performance of resin-modified glass ionomer cement, flowable composite, and polyacid-modified resin composite in noncarious cervical lesions: One-year follow-up. J Conserv Dent. 2018;21(5):510-515.
  • 13. Poorzandpoush K, Omrani LR, Jafarnia SH, Golkar P, Atai M. Effect of addition of nano hydroxyapatite particles on wear of resin modified glass ionomer by tooth brushing simulation. J Clin Exp Dent. 2017;9(3):e372-e376.
  • 14. Pala K, Tekçe N, Karakuyu H, Özel E. İki farklı diş macununun farklı restoratif materyallerin yüzey pürüzlülüğü üzerine etkisi. J Dent Fac Atatürk Uni. 2016;26(3):399-406.
  • 15. Atalı P, Öksüz M, Topbaşı F. Fırçalamanın ve beyazlatıcılı diş macunların kompozitlerin yüzey özelliklerine etkisi. J Dent Fac Atatürk Uni. 2014;24(1):22-32.
  • 16. Dos Santos JH, Silva NL, Gomes MG, Paschoal MA, Gomes IA. Whitening toothpastes effect on nanoparticle resin composite roughness after a brushing challenge: An in vitro study. J Clin Exp Dent. 2019;11(4):334-339.
  • 17. Mondelli RFL, Wang L, Garcia FCP, et al. Evaluation of weight loss and surface roughness of compomers after simulated toothbrushing abrasion test. J Appl Oral Sci. 2005;13(2):131-135.
  • 18. Nayyer M, Zahid S, Hassan SH, et al. Comparative abrasive wear resistance and surface analysis of dental resin-based materials. Eur J Dent. 2018;12(1):57-66.
  • 19. O’Neill C, Kreplak L, Rueggeberg FA, Labrie D, Shimokawa CAK, Price RB. Effect of tooth brushing on gloss retention and surface roughness of five bulk-fill resin composites. J Esthet Restor Dent. 2018;30(1):59-69.
  • 20. Roselino LDMR, Chinelatti MA, Alandia-Román CC, Pires-de-Souza FDCP. Effect of brushing time and dentifrice abrasiveness on color change and surface roughness of resin composites. Braz Dent J. 2015;26(5):507-513.
  • 21. Kantovitz KR, Fernandes FP, Feitosa IV, et al. TiO(2) nanotubes improve physico-mechanical properties of glass ionomer cement. Dent Mater. 2020;36(3):85-92.
  • 22. Goldstein GR, Lerner T. The effect of toothbrushing on a hybrid composite resin. J Prosthet Dent. 1991;66(4):498-500.
  • 23. Daud A, Adams AJ, Shawkat A, et al. Effects of toothbrushing on surface characteristics of microhybrid and nanofilled resin composites following different finishing and polishing procedures. J Dent. 2020;99:103376.
  • 24. Ömürlü H, Arısu HD, Eligüzeloğlu E, Üçtaşlı MB, Bala O. Gazi üniversitesi diş hekimliği fakültesi diş hastalıkları ve tedavisi anabilim dalına başvuran hastaların direkt restorasyonlarının klinik başarısının değerlendirilmesi. GÜ Diş Hek Fak Derg. 2011;28(1):23-28.
  • 25. Lang T, Staufer S, Jennes B, Gaengler P. Clinical validation of robot simulation of toothbrushing-comparative plaque removal efficacy. BMC Oral Health. 2014;14(1):1-9.
  • 26. Attin T, Vataschki M, Hellwig E. Properties of resin-modified glass-ionomer restorative materials and two polyacid-modified resin composite materials. Quintessence Int. 1996;27(3):203-209.
  • 27. Uno S, Finger WJ, Fritz U. Long-term mechanical characteristics of resin-modified glass ionomer restorative materials. Dent Mater. 1996;12(1):64-69.
  • 28. Momoi Y, Hirosaki K, Kohno A, McCabe JF. In vitro toothbrush-dentifrice abrasion of resin-modified glass ionomers. Dent Mater. 1997;13(2):82-88.
  • 29. Kaur S, Makkar S, Kumar R, Pasricha S, Gupta P. Comparative evaluation of surface properties of enamel and different esthetic restorative materials under erosive and abrasive challenges: An in vitro study. Indian J Dent. 2015;6(4):172-180.
  • 30. El-Kalla IH, García-Godoy F. Mechanical properties of compomer restorative materials. Oper Dent. 1999;24(1):2-8.
  • 31. Frazier KB, Rueggeberg FA, Mettenburg DJ. Comparison of wear-resistance of Class V restorative materials. J Esthet Dent. 1998;10(6):309-314.
  • 32. Chinelatti MA, Ramos RP, Chimello DT, Palma-Dibb RG. Clinical performance of a resin-modified glass-ionomer and two polyacid-modified resin composites in cervical lesions restorations: 1-year follow-up. J Oral Rehabil. 2004;31(3):251-257.
  • 33. Bayne SC. Dental biomaterials: where are we and where are we going? J Dent Educ. 2005;69(5):571-585.
  • 34. Say EC, Yurdagüven H, Yaman BC, Özer F. Surface roughness and morphology of resin composites polished with two-step polishing systems. Dent Mater J. 2014;33(3):332-342.
  • 35. AlAli M, Silikas N, Satterthwaite J. The effects of toothbrush wear on the surface roughness and gloss of resin composites with various types of matrices. Dent J. 2021;9(1):8.
  • 36. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000;16(2):129-138.
  • 37. Francisconi LF, Honório HM, Rios D, Magalhães AC, Machado MA, Buzalaf MA. Effect of erosive pH cycling on different restorative materials and on enamel restored with these materials. Oper Dent. 2008;33(2):203-208.
  • 38. Demirci M, Yıldız E, Uysal O. Comparative clinical evaluation of different treatment approaches using a microfilled resin composite and a compomer in Class III cavities: two-year results. Oper Dent. 2008;33(1):7-14.
  • 39. Lund R, Sehn F, Piva E, et al. Clinical performance and wear resistance of two compomers in posterior occlusal restorations of permanent teeth: Six-year follow-up. Oper Dent. 2007;32(2):118-123.
  • 40. Eren MM, Ozan G, Erdemir U, Vatansever C. Streptococcus Mutans adhesion to dental restorative materials after polishing with various systems: A Confocal Microscopy study. Acta Microscópica. 2021;30(1):54-64.
  • 41. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997;13(4):258-269.
  • 42. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol. 1990;17(3):138-144.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Araştırma Makalesi
Yazarlar

Berna Ertürk Bu kişi benim

Ebru Hazar Bodrumlu Bu kişi benim

Yayımlanma Tarihi 15 Şubat 2022
Gönderilme Tarihi 8 Temmuz 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 32 Sayı: 1

Kaynak Göster

AMA Ertürk B, Hazar Bodrumlu E. DİŞ FIRÇALAMANIN ÇOCUK DİŞ HEKİMLİĞİNDE KULLANILAN FARKLI RESTORATİF MATERYALLERDE YÜZEY PÜRÜZLÜLÜĞÜ ÜZERİNE ETKİSİ. Curr Res Dent Sci. Şubat 2022;32(1):23-28. doi:10.17567/ataunidfd.1013048

Current Research in Dental Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

29936