Derleme
BibTex RIS Kaynak Göster

ÇOCUK DİŞ HEKİMLİĞİNDE KULLANILAN FARKLI RADYOGRAFİ TEKNİKLERİNDE RADYASYON DOZUNU AZALTICI ÖNLEMLER

Yıl 2022, Cilt: 32 Sayı: 3, 231 - 238, 14.07.2022
https://doi.org/10.17567/ataunidfd.1038856

Öz

Çocuk diş hekimliğinde teşhis, tedavi ve takip amacıyla radyografik görüntüleme yöntemlerine başvurulmak- tadır. Radyografik yöntemlerin çalışma prensibi iyonize edici radyasyona dayanmaktadır. Kullanılan radyografik yöntemlerin ihmal edilebilir düzeyde hasta dozu oluşturduğu kabul edilse de günümüzde iyonize radyasyon maruziyetinin herhangi bir eşik doz olmaksızın kanser gelişim riskine neden olabileceği bilinmektedir. Çocuk hastalarda erişkinlere kıyasla daha yüksek mitotik aktivite gösteren, daha az gelişmiş ve daha az farklılaşmış hücrelerin varlığı bunun yanı sıra çocukların fiziksel olarak küçük olmaları sebebiyle direk veya saçılmış radyas- yona daha çok organ ve dokunun maruz kalması kanser gelişme riskini arttırmaktadır. Çocuklarda radyasyona en duyarlı olan doku ve organlar tiroid, meme, kemik iliği, beyin ve cilt olarak gösterilmiş olup, dental rad- yografik muayene sırasında birincil veya saçılan X ışınlarından en çok etkilenen alanlardır. Bu nedenle, gerekli olduğu durumlarda radyografik muayeneye başvurulmalı ve radyasyon dozunu azaltan önlemler alınmalıdır. Bu derlemedeki amacımız; radyasyona daha duyarlı olan çocuk hastalarda, hangi durumlarda radyografik yöntem- lerin kullanılması gerektiğini, X ışını cihazlarındaki bazı modifikasyonlar ile çocuk hastalarda radyasyon dozunu azaltabilecek uygulamaları ve kullanılabilecek koruyucu ekipmanları yapılan pek çok çalışma yardımıyla ortaya koymaktır.
Anahtar kelimeler: Deterministik etki, efektif doz, eşdeğer doz, ekstraoral radyografi, intraoral radyografi, iyo- nize radyasyon, sitokastik etki

ABSTRACT
Radiographic imaging methods are used in pediatric dentistry for diagnosis, treatment, and follow-up. The operation principle of radiographic methods is based on ionizing radiation. Even though the patient dose of the radiographic methods used is accepted to be at a negligible level, it is now known that ionizing radiation exposure can cause cancer without a threshold dose. The presence of less developed and less differentiated cells showing higher mitotic activity in pediatric patients compared to adults, as well as the exposure of more organs and tissues to direct or scatter radiation because children are physically small increases the risk of can- cer development. It has been shown that the thyroid, breast, bone marrow, brain, and skin are the tissues and organs most sensitive to radiation in children, and they are the areas most affected by primary or scattered X-rays during dental radiographic examination. Therefore, radiographic examinations should be performed only when necessary, and steps should be taken to reduce radiation exposure. With the help of numerous studies, our aim in this study is to present in which situation the radiographic methods should be used in pediatric patients who are more sensitive to radiation, some modifications in X-ray devices, applications that can reduce the radiation dose in pediatric patients, and protective equipment that can be used on pediatric patients.
Keywords: Deterministic effect, effective dose, equivalent dose, extraoral radiography, intraoral radiography, ionizing radiation, stochastic effect

Kaynakça

  • 1. Espelid I, Mejàre I, Weerheijm K. EAPD guidelines for use of radiog- raphs in children. Eur J Paediatr Dent. 2003;4(1):40-48.
  • 2. Van Acker J, Pauwels N, Cauwels R, Rajasekharan S. Outcomes of different radioprotective precautions in children undergoing dental radiography: a systematic review. Eur Arch Paediatr Dent. 2020;21(4):463-508. [Crossref]
  • 3. UNSCEAR. Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2013 Report, Volume II. In: Scientific Annex B: Effects of radiation exposure of children. United Nations Publication; 2014:5- 25 e-ISBN: 978-92-1-054215-9. [Crossref]
  • 4. Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson D, Scheske MJ. Effective dose of dental CBCT—a meta analysis of pub- lished data and additional data for nine CBCT units. Dentomaxillofac Radiol. 2015;44(1):20140197. [Crossref]
  • 5. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report. Volume I: Sources. Uni- ted Nations Publication; 2000. ISBN 92-1-142238-8:4-22.
  • 6. Qiang W, Qiang F, Lin L. Estimation of effective dose of dental X-ray devices. Radiat Prot Dosimetry. 2019;183(4): 418-422. [Crossref]
  • 7. Whaites E, Drage N. Essentials of Dental Radiography and Radiology. 5th ed. Elsevier; 2013:85-119,135-143,171-209.
  • 8. Aps J. To beam or not to beam: that is the question. Dentomaxillofac Radiol. 2013;42(2):20120375. [Crossref]
  • 9. LudlowJ.B, Ivanovic M. Comparative dosimetry of dental CBCT devi- ces and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2008;106(1):106-114. [Crossref]
  • 10. Tsiklakis K, Donta C, Gavala S, Karayianni K, Kamenopoulou V, Ha- urdakis CJ. Dose reduction in maxillofacial imaging using low dose Cone Beam CT. Eur J Radiol. 2005;56(3):413-417. [Crossref]
  • 11. Prins R, Dauer LT, Colosi DC, et al. Significant reduction in dental cone beam computed tomography (CBCT) eye dose through the use of leaded glasses. Oral Surg Oral Med Oral Pathol Oral Radiol. 2011;112(4):502-507. [Crossref]
  • 12. Mehta V, Ahmad N. Cone beamed computed tomography in pe- diatric dentistry: Concepts revisited. J Oral Biol Craniofac Res. 2020;10(2):210. [Crossref]
  • 13. Mettler FA. Medical effects and risks of exposure to ionising radiati- on. J Radiol Prot. 2012;32(1):9. [Crossref]
  • 14. Smith N. Risk assessment: the philosophy underlying radiation pro- tection. Int Dent J. 1987; 37(1):43-51.
  • 15. Stecker MS, Balter S, Towbin RB, et al. Guidelines for patient radiation dose management. JVasc Interv Radiol. 2009;20(7):263-273. [Crossref]
  • 16. Okano T, Sur J. Radiation dose and protection in dentistry. Jpn Dent Sci Rev. 2010;46(2):112-121. [Crossref]
  • 17. Svenson B, Söderfeldt B, Gröndahl HG. Analysis of dentists’ at- titudes towards risks in oral radiology. Dentomaxillofac Radiol. 1996;25(3):151-156. [Crossref]
  • 18. Kleinerman RA. Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol. 2006;36(2):121-125. [Crossref]
  • 19. Preston-Martin S, Thomas DC, White SC, Cohen D. Prior exposure to medical and dental x-rays related to tumors of the parotid gland. J Natl Cancer Inst. 1988;80(12):943-949. [Crossref]
  • 20. Preston-Martin S, White SC. Brain and salivary gland tumors related to prior dental radiography: implications for current practice. J Am Dent Assoc. 1990;120(2):151-158. [Crossref]
  • 21. Claus EB, Calvocoressi L, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M. Dental x-rays and risk of meningioma. Cancer. 2012;118(18): 4530-4537. [Crossref]
  • 22. Neta G, Rajaraman P, Gonzalez AB, et al. A prospective study of medi- cal diagnostic radiography and risk of thyroid cancer. Am J Epidemiol. 2013;177(8):800-809. [Crossref]
  • 23. Memon A, Godword S, Williams D, Siddique I, Al-Saleh IC.Dental x-rays and the risk of thyroid cancer: a case-control study. Acta On- col. 2010;49(4):447-453. [Crossref] 24. Lorenzoni DC, Fracalossi ACC, Carlin V, Ribeiro DA, Sant’Anna EF. Mutagenicity and cytotoxicity in patients submitted to ionizing radiation: a comparison between cone beam computed tomography and radiographs for orthodontic treatment. Angle Orthod. 2013;83(1):104-109. [Crossref]
  • 25. Cerqueira EMM, Meireles JRC, Junqueira VC, Gomes- Filho IS, Trinade S, Machado-Santelli GM. Genotoxic effects of X-rays on keratinized mucosa cells during panoramic dental radiography. Dentomaxillofac Radiol. 2008;37(7): 398-403. [Crossref]
  • 26. Senior A, Almeida FT, Geha H, Pacheco-Pereiro C. Intraoral imaging in dental private practice—A rectangular collimator study. J Can Dent Assoc. 2020;86(k16):1488-2159.
  • 27. Boeddinghaus R, Whyte A. Current concepts in maxillofacial ima- ging. Eur J Radiol. 2008;66(3):396-418. [Crossref]
  • 28. Berkhout WE. The ALARA-principle: Backgrounds and enforcement in dental practices. Ned Tijdschr Tandheelkd. 2015;122(5): 263-270. [Crossref]
  • 29. American Dental Association Council on Scientific Affairs. The use of dental radiographs: update and recommendations. J Am Dent Assoc. 2006;137(9):1304-1312. [Crossref]
  • 30. Raadal M, Amarante E, Espelid I. Prevalence, severity and distribution of caries in a group of 5-year-old Norwegian children. Eur J Paediatr Dent. 2000;1(1):13-20.
  • 31. Radiation Protection. European guidelines on radiation protection in dental radiology. The safe use of radiographs in dental practice. European Committee Issue. 2004;20-23,41-52,63-68. ISBN 92-894- 5958-1.
  • 32. Crane GD, Abbott P. Radiation shielding in dentistry: an update. Aust Dent J. 2016;61(3):277-281. [Crossref]
  • 33. White SC, Heslop EW, Hollender LG, Mosier KM, Ruprecht A, Shrout MK. Parameters of radiologic care: An official report of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2001;91(5): 498-511. [Crossref]
  • 34. White SC, Pharoah M. Oral Radiology: Principles and Interpretation.7th ed. St Louis, Mo: Mosby Elsevier; 2009:448-452.
  • 35. Horner K, Hirschmann P. Dose reduction in dental radiography. J Dent. 1990;18(4):171-184. [Crossref]
  • 36. Horner K. Radiation protection in dental radiology. Br J Radiol. 1994;67(803): 1041-1049. [Crossref]
  • 37. Aps J, Scott J. Oblique lateral radiographs and bitewings; esti- mation of organ doses in head and neck region with Monte Car- lo calculations. Dentomaxillofac Radiol. 2014;43(6):20130419. [Crossref]
  • 38. Hayakawa Y, Fujimori H, Kuroyanagi K. Absorbed doses with intrao- ral radiography: Function of various technical parameters. Oral Surg Oral Med Oral Pathol Oral Radiol. 1993;76(4): 519-524. [Crossref]
  • 39. Geist J, Brand J. Sensitometric comparison of speed group E and F dental radiographic films. Dentomaxillofac Radiol. 2001;30(3): 147- 152. [Crossref]
  • 40. Akgün ÖM, Oflaz Ü, Altun C. Çürük Tespitinde Güncel Yaklaşımlar. Türkiye Klinikleri. J Health Sci. 2018;4(1):10-14
  • 41. Wenzel A. Bitewing and digital bitewing radiography for detection of caries lesions. J Dent Res. 2004;83(1):72-75. [Crossref]
  • 42. Astvaldsdottir A, Ahlund K,Holbrook WP, de Verdler B, Tranaeus S. Approximal caries detection by DIFOTI: in vitro comparison of diag- nostic accuracy/efficacy with film and digital radiography. Int J Dent. 2012;2012:326401. [Crossref]
  • 43. Abdelaziz M, Krejci I. DIAGNOcam: A Near Infrared Digital Ima- ging Transillumination (NIDIT) technology. Int J Esthet Dent. 2015;10(1):158-165.
  • 44. Stookey GK, González-Cabezas C. Emerging methods of caries diag- nosis. J Dent Educ. 2001;65(10):1001-1006. [Crossref]
  • 45. Choi J-W. Assessment of panoramic radiography as a national oral examination tool: review of the literature. Imaging Sci Dent. 2011;41(1):1-6. [Crossref]
  • 46. Temur KT, Hatıpoglu O. Awareness and use of Cone-Beam Compu- ted Tomography (CBCT) of Turkish dentist. J Dent Fac Ataturk Univ. 2019;29(2):169-175. [Crossref] 47. Lecomber A, Faulkner K. Dose reduction in panoramic radiography. Dentomaxillofac Radiol. 1993;22(2):69-73. [Crossref]
  • 48. Hayakawa Y, Kobayashi N, Kurayanagi K, Nishizawa K. Paediatric ab- sorbed doses from rotational panoramic radiography. Dentomaxillo- fac Radiol. 2001;30(5):285-292. [Crossref]
  • 49. Davis A, Safi H, Maddison S. The reduction of dose in paediatric pano- ramic radiography: the impact of collimator height and programme selection. Dentomaxillofac Radiol. 2015;44(2):20140223. [Crossref]
  • 50. Rottke D, Grossekettler L, Sawado K, Poxleitner P, Schulze D. Influen- ce of lead apron shielding on absorbed doses from panoramic radi- ography. Dentomaxillofac Radiol. 2013;42(10):20130302. [Crossref]
  • 51. Gijbels F, Sanderink G, Wyatt J, Dam JV, Nowak B, Jacobss R. Radiati- on doses of collimated vs non-collimated cephalometric exposures. Dentomaxillofac Radiol. 2003;32(2):128-133. [Crossref]
  • 52. Mandall N, O’Brien K, Worthington H. Radiation reduction using a modified collimated lateral skull radiograph during orthodontic tre- atment. Clin Orthod Res. 1999;2(4):179-185. [Crossref]
  • 53. Alcaraz M, Garcia-Vera MC, Bravo LA, et al. Collimator with filtration compensator: clinical adaptation to meet European Union recom- mendation 4F on radiological protection for dental radiography. Dentomaxillofac Radiol. 2009;38(6):413-420. [Crossref]
  • 54. Wiechmann D, Decker A, Hohoff A, Kleinheinz J, Stamm T. The influ- ence of lead thyroid collars on cephalometric landmark identificati- on. Oral Surg Oral Med Oral Pathol Oral Radiol. 2007;104(4):560-568. [Crossref]
  • 55. Hsiao TH, Chang HP, Liu KM. A method of magnification correcti- on for posteroanterior radiographic cephalometry. Angle Orthod. 1997;67(2):137-142.
  • 56. Mazonakis M, Damilakis J, Raissaki M, Gourtsayiannis N. Radiation dose and cancer risk to children undergoing skull radiography. Pedi- atr Radiol. 2004;34(8):624-629. [Crossref]
  • 57. Robb J. Estimates of radiation detriment in a UK population. National Radiological Protection Board; 1994:40. ISBN 0 85951 385 0.
  • 58. Kyriou J, Fitzgerald M, Pettett A, Cook JV, Pablot SM. A compari- son of doses and techniques between specialist and non-specia- list centres in the diagnostic X-ray imaging of children. Br J Radiol. 1996;69(821):437-450. [Crossref] 59. Loubele M, Bogaerts R, Dijck EV, et al. Comparison between effecti- ve radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol. 2009;71(3):461-468. [Crossref]
  • 60. Ludlow JB, Davies-Ludlow LE, White SC. Patient risk related to com- mon dental radiographic examinations: the impact of 2007 Interna- tional Commission on Radiological Protection recommendations re- garding dose calculation. J Am Dent Assoc. 2008;139(9):1237-1243. [Crossref]
  • 61. Theodorakou C, Walker A, Horner K, Pauwels R, Bogaerts R, JacobsR. Estimation of paediatric organ and effective doses from den- tal cone beam CT using anthropomorphic phantoms. Br J Radiol. 2012;85(1010):153-160. [Crossref]
  • 62. Al Najjar A, Colosi D, Dauer LT, et al. Comparison of adult and child radiation equivalent doses from 2 dental cone-beam computed tomography units. Am J Orthod Dentofac Orthop. 2013;143(6):784- 792. [Crossref]
  • 63. Oenning AC, Pauwels R, Stratis A, et al. Halve the dose while main- taining image quality in paediatric Cone Beam CT. Scientific reports. 2019;9(1):1-9. [Crossref]
  • 64. Shin HS, Nam KC, Park H, Choi HU, Kim HY, Parks CS. Effecti- ve doses from panoramic radiography and CBCT (cone beam CT) using dose area product (DAP) in dentistry. Dentomaxillofac Radiol. 2014;43(5):20130439. [Crossref]
  • 65. EzEldeen M, Stratis A, Coucke W, Codari M, Politis C, Jacobs R. As low dose as sufficient quality: optimization of cone-beam computed to- mographic scanning protocol for tooth autotransplantation planning and follow-up in children. J Endod. 2017;43(2):210-217.[Crossref]
  • 66. Hidalgo A, Davies J, Horner K, Theodorakou C. Effectiveness of thyroid gland shielding in dental CBCT using a paediatric anthropomorphic phantom. Dentomaxillofac Radiol. 2015;44(3):20140285. [Crossref]
  • 67. Goren A, Prins RD, Dauer LT, et al. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phan- tom. Dentomaxillofac Radiol. 2013;42(6):20120260. [Crossref]
  • 68. Ainsbury E, Bouffler SD, Dörr W, Graw J, Muirhead CR, Edwards AA, Cooper J Radiation cataractogenesis: a review of recent studies. Ra- diat Res. 2009;172(1):1-9. [Crossref]
Yıl 2022, Cilt: 32 Sayı: 3, 231 - 238, 14.07.2022
https://doi.org/10.17567/ataunidfd.1038856

Öz

Kaynakça

  • 1. Espelid I, Mejàre I, Weerheijm K. EAPD guidelines for use of radiog- raphs in children. Eur J Paediatr Dent. 2003;4(1):40-48.
  • 2. Van Acker J, Pauwels N, Cauwels R, Rajasekharan S. Outcomes of different radioprotective precautions in children undergoing dental radiography: a systematic review. Eur Arch Paediatr Dent. 2020;21(4):463-508. [Crossref]
  • 3. UNSCEAR. Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2013 Report, Volume II. In: Scientific Annex B: Effects of radiation exposure of children. United Nations Publication; 2014:5- 25 e-ISBN: 978-92-1-054215-9. [Crossref]
  • 4. Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson D, Scheske MJ. Effective dose of dental CBCT—a meta analysis of pub- lished data and additional data for nine CBCT units. Dentomaxillofac Radiol. 2015;44(1):20140197. [Crossref]
  • 5. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report. Volume I: Sources. Uni- ted Nations Publication; 2000. ISBN 92-1-142238-8:4-22.
  • 6. Qiang W, Qiang F, Lin L. Estimation of effective dose of dental X-ray devices. Radiat Prot Dosimetry. 2019;183(4): 418-422. [Crossref]
  • 7. Whaites E, Drage N. Essentials of Dental Radiography and Radiology. 5th ed. Elsevier; 2013:85-119,135-143,171-209.
  • 8. Aps J. To beam or not to beam: that is the question. Dentomaxillofac Radiol. 2013;42(2):20120375. [Crossref]
  • 9. LudlowJ.B, Ivanovic M. Comparative dosimetry of dental CBCT devi- ces and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2008;106(1):106-114. [Crossref]
  • 10. Tsiklakis K, Donta C, Gavala S, Karayianni K, Kamenopoulou V, Ha- urdakis CJ. Dose reduction in maxillofacial imaging using low dose Cone Beam CT. Eur J Radiol. 2005;56(3):413-417. [Crossref]
  • 11. Prins R, Dauer LT, Colosi DC, et al. Significant reduction in dental cone beam computed tomography (CBCT) eye dose through the use of leaded glasses. Oral Surg Oral Med Oral Pathol Oral Radiol. 2011;112(4):502-507. [Crossref]
  • 12. Mehta V, Ahmad N. Cone beamed computed tomography in pe- diatric dentistry: Concepts revisited. J Oral Biol Craniofac Res. 2020;10(2):210. [Crossref]
  • 13. Mettler FA. Medical effects and risks of exposure to ionising radiati- on. J Radiol Prot. 2012;32(1):9. [Crossref]
  • 14. Smith N. Risk assessment: the philosophy underlying radiation pro- tection. Int Dent J. 1987; 37(1):43-51.
  • 15. Stecker MS, Balter S, Towbin RB, et al. Guidelines for patient radiation dose management. JVasc Interv Radiol. 2009;20(7):263-273. [Crossref]
  • 16. Okano T, Sur J. Radiation dose and protection in dentistry. Jpn Dent Sci Rev. 2010;46(2):112-121. [Crossref]
  • 17. Svenson B, Söderfeldt B, Gröndahl HG. Analysis of dentists’ at- titudes towards risks in oral radiology. Dentomaxillofac Radiol. 1996;25(3):151-156. [Crossref]
  • 18. Kleinerman RA. Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol. 2006;36(2):121-125. [Crossref]
  • 19. Preston-Martin S, Thomas DC, White SC, Cohen D. Prior exposure to medical and dental x-rays related to tumors of the parotid gland. J Natl Cancer Inst. 1988;80(12):943-949. [Crossref]
  • 20. Preston-Martin S, White SC. Brain and salivary gland tumors related to prior dental radiography: implications for current practice. J Am Dent Assoc. 1990;120(2):151-158. [Crossref]
  • 21. Claus EB, Calvocoressi L, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M. Dental x-rays and risk of meningioma. Cancer. 2012;118(18): 4530-4537. [Crossref]
  • 22. Neta G, Rajaraman P, Gonzalez AB, et al. A prospective study of medi- cal diagnostic radiography and risk of thyroid cancer. Am J Epidemiol. 2013;177(8):800-809. [Crossref]
  • 23. Memon A, Godword S, Williams D, Siddique I, Al-Saleh IC.Dental x-rays and the risk of thyroid cancer: a case-control study. Acta On- col. 2010;49(4):447-453. [Crossref] 24. Lorenzoni DC, Fracalossi ACC, Carlin V, Ribeiro DA, Sant’Anna EF. Mutagenicity and cytotoxicity in patients submitted to ionizing radiation: a comparison between cone beam computed tomography and radiographs for orthodontic treatment. Angle Orthod. 2013;83(1):104-109. [Crossref]
  • 25. Cerqueira EMM, Meireles JRC, Junqueira VC, Gomes- Filho IS, Trinade S, Machado-Santelli GM. Genotoxic effects of X-rays on keratinized mucosa cells during panoramic dental radiography. Dentomaxillofac Radiol. 2008;37(7): 398-403. [Crossref]
  • 26. Senior A, Almeida FT, Geha H, Pacheco-Pereiro C. Intraoral imaging in dental private practice—A rectangular collimator study. J Can Dent Assoc. 2020;86(k16):1488-2159.
  • 27. Boeddinghaus R, Whyte A. Current concepts in maxillofacial ima- ging. Eur J Radiol. 2008;66(3):396-418. [Crossref]
  • 28. Berkhout WE. The ALARA-principle: Backgrounds and enforcement in dental practices. Ned Tijdschr Tandheelkd. 2015;122(5): 263-270. [Crossref]
  • 29. American Dental Association Council on Scientific Affairs. The use of dental radiographs: update and recommendations. J Am Dent Assoc. 2006;137(9):1304-1312. [Crossref]
  • 30. Raadal M, Amarante E, Espelid I. Prevalence, severity and distribution of caries in a group of 5-year-old Norwegian children. Eur J Paediatr Dent. 2000;1(1):13-20.
  • 31. Radiation Protection. European guidelines on radiation protection in dental radiology. The safe use of radiographs in dental practice. European Committee Issue. 2004;20-23,41-52,63-68. ISBN 92-894- 5958-1.
  • 32. Crane GD, Abbott P. Radiation shielding in dentistry: an update. Aust Dent J. 2016;61(3):277-281. [Crossref]
  • 33. White SC, Heslop EW, Hollender LG, Mosier KM, Ruprecht A, Shrout MK. Parameters of radiologic care: An official report of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2001;91(5): 498-511. [Crossref]
  • 34. White SC, Pharoah M. Oral Radiology: Principles and Interpretation.7th ed. St Louis, Mo: Mosby Elsevier; 2009:448-452.
  • 35. Horner K, Hirschmann P. Dose reduction in dental radiography. J Dent. 1990;18(4):171-184. [Crossref]
  • 36. Horner K. Radiation protection in dental radiology. Br J Radiol. 1994;67(803): 1041-1049. [Crossref]
  • 37. Aps J, Scott J. Oblique lateral radiographs and bitewings; esti- mation of organ doses in head and neck region with Monte Car- lo calculations. Dentomaxillofac Radiol. 2014;43(6):20130419. [Crossref]
  • 38. Hayakawa Y, Fujimori H, Kuroyanagi K. Absorbed doses with intrao- ral radiography: Function of various technical parameters. Oral Surg Oral Med Oral Pathol Oral Radiol. 1993;76(4): 519-524. [Crossref]
  • 39. Geist J, Brand J. Sensitometric comparison of speed group E and F dental radiographic films. Dentomaxillofac Radiol. 2001;30(3): 147- 152. [Crossref]
  • 40. Akgün ÖM, Oflaz Ü, Altun C. Çürük Tespitinde Güncel Yaklaşımlar. Türkiye Klinikleri. J Health Sci. 2018;4(1):10-14
  • 41. Wenzel A. Bitewing and digital bitewing radiography for detection of caries lesions. J Dent Res. 2004;83(1):72-75. [Crossref]
  • 42. Astvaldsdottir A, Ahlund K,Holbrook WP, de Verdler B, Tranaeus S. Approximal caries detection by DIFOTI: in vitro comparison of diag- nostic accuracy/efficacy with film and digital radiography. Int J Dent. 2012;2012:326401. [Crossref]
  • 43. Abdelaziz M, Krejci I. DIAGNOcam: A Near Infrared Digital Ima- ging Transillumination (NIDIT) technology. Int J Esthet Dent. 2015;10(1):158-165.
  • 44. Stookey GK, González-Cabezas C. Emerging methods of caries diag- nosis. J Dent Educ. 2001;65(10):1001-1006. [Crossref]
  • 45. Choi J-W. Assessment of panoramic radiography as a national oral examination tool: review of the literature. Imaging Sci Dent. 2011;41(1):1-6. [Crossref]
  • 46. Temur KT, Hatıpoglu O. Awareness and use of Cone-Beam Compu- ted Tomography (CBCT) of Turkish dentist. J Dent Fac Ataturk Univ. 2019;29(2):169-175. [Crossref] 47. Lecomber A, Faulkner K. Dose reduction in panoramic radiography. Dentomaxillofac Radiol. 1993;22(2):69-73. [Crossref]
  • 48. Hayakawa Y, Kobayashi N, Kurayanagi K, Nishizawa K. Paediatric ab- sorbed doses from rotational panoramic radiography. Dentomaxillo- fac Radiol. 2001;30(5):285-292. [Crossref]
  • 49. Davis A, Safi H, Maddison S. The reduction of dose in paediatric pano- ramic radiography: the impact of collimator height and programme selection. Dentomaxillofac Radiol. 2015;44(2):20140223. [Crossref]
  • 50. Rottke D, Grossekettler L, Sawado K, Poxleitner P, Schulze D. Influen- ce of lead apron shielding on absorbed doses from panoramic radi- ography. Dentomaxillofac Radiol. 2013;42(10):20130302. [Crossref]
  • 51. Gijbels F, Sanderink G, Wyatt J, Dam JV, Nowak B, Jacobss R. Radiati- on doses of collimated vs non-collimated cephalometric exposures. Dentomaxillofac Radiol. 2003;32(2):128-133. [Crossref]
  • 52. Mandall N, O’Brien K, Worthington H. Radiation reduction using a modified collimated lateral skull radiograph during orthodontic tre- atment. Clin Orthod Res. 1999;2(4):179-185. [Crossref]
  • 53. Alcaraz M, Garcia-Vera MC, Bravo LA, et al. Collimator with filtration compensator: clinical adaptation to meet European Union recom- mendation 4F on radiological protection for dental radiography. Dentomaxillofac Radiol. 2009;38(6):413-420. [Crossref]
  • 54. Wiechmann D, Decker A, Hohoff A, Kleinheinz J, Stamm T. The influ- ence of lead thyroid collars on cephalometric landmark identificati- on. Oral Surg Oral Med Oral Pathol Oral Radiol. 2007;104(4):560-568. [Crossref]
  • 55. Hsiao TH, Chang HP, Liu KM. A method of magnification correcti- on for posteroanterior radiographic cephalometry. Angle Orthod. 1997;67(2):137-142.
  • 56. Mazonakis M, Damilakis J, Raissaki M, Gourtsayiannis N. Radiation dose and cancer risk to children undergoing skull radiography. Pedi- atr Radiol. 2004;34(8):624-629. [Crossref]
  • 57. Robb J. Estimates of radiation detriment in a UK population. National Radiological Protection Board; 1994:40. ISBN 0 85951 385 0.
  • 58. Kyriou J, Fitzgerald M, Pettett A, Cook JV, Pablot SM. A compari- son of doses and techniques between specialist and non-specia- list centres in the diagnostic X-ray imaging of children. Br J Radiol. 1996;69(821):437-450. [Crossref] 59. Loubele M, Bogaerts R, Dijck EV, et al. Comparison between effecti- ve radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol. 2009;71(3):461-468. [Crossref]
  • 60. Ludlow JB, Davies-Ludlow LE, White SC. Patient risk related to com- mon dental radiographic examinations: the impact of 2007 Interna- tional Commission on Radiological Protection recommendations re- garding dose calculation. J Am Dent Assoc. 2008;139(9):1237-1243. [Crossref]
  • 61. Theodorakou C, Walker A, Horner K, Pauwels R, Bogaerts R, JacobsR. Estimation of paediatric organ and effective doses from den- tal cone beam CT using anthropomorphic phantoms. Br J Radiol. 2012;85(1010):153-160. [Crossref]
  • 62. Al Najjar A, Colosi D, Dauer LT, et al. Comparison of adult and child radiation equivalent doses from 2 dental cone-beam computed tomography units. Am J Orthod Dentofac Orthop. 2013;143(6):784- 792. [Crossref]
  • 63. Oenning AC, Pauwels R, Stratis A, et al. Halve the dose while main- taining image quality in paediatric Cone Beam CT. Scientific reports. 2019;9(1):1-9. [Crossref]
  • 64. Shin HS, Nam KC, Park H, Choi HU, Kim HY, Parks CS. Effecti- ve doses from panoramic radiography and CBCT (cone beam CT) using dose area product (DAP) in dentistry. Dentomaxillofac Radiol. 2014;43(5):20130439. [Crossref]
  • 65. EzEldeen M, Stratis A, Coucke W, Codari M, Politis C, Jacobs R. As low dose as sufficient quality: optimization of cone-beam computed to- mographic scanning protocol for tooth autotransplantation planning and follow-up in children. J Endod. 2017;43(2):210-217.[Crossref]
  • 66. Hidalgo A, Davies J, Horner K, Theodorakou C. Effectiveness of thyroid gland shielding in dental CBCT using a paediatric anthropomorphic phantom. Dentomaxillofac Radiol. 2015;44(3):20140285. [Crossref]
  • 67. Goren A, Prins RD, Dauer LT, et al. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phan- tom. Dentomaxillofac Radiol. 2013;42(6):20120260. [Crossref]
  • 68. Ainsbury E, Bouffler SD, Dörr W, Graw J, Muirhead CR, Edwards AA, Cooper J Radiation cataractogenesis: a review of recent studies. Ra- diat Res. 2009;172(1):1-9. [Crossref]
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Hekimliği
Bölüm Derlemeler
Yazarlar

Aybike Baş Bu kişi benim

Sera Şimşek Derelioğlu Bu kişi benim

Yayımlanma Tarihi 14 Temmuz 2022
Gönderilme Tarihi 3 Ağustos 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 32 Sayı: 3

Kaynak Göster

AMA Baş A, Şimşek Derelioğlu S. ÇOCUK DİŞ HEKİMLİĞİNDE KULLANILAN FARKLI RADYOGRAFİ TEKNİKLERİNDE RADYASYON DOZUNU AZALTICI ÖNLEMLER. Curr Res Dent Sci. Temmuz 2022;32(3):231-238. doi:10.17567/ataunidfd.1038856

Current Research in Dental Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

29936