Matematik Öğretmeni Adaylarının Önermeleri Olumsuzlama Yeterliklerinin İncelenmesi
Yıl 2024,
Sayı: 62, 3296 - 3313, 30.12.2024
Erdem Çekmez
,
Mustafa Güler
Öz
Bu çalışmada ilköğretim matematik öğretmeni adaylarının önermelerin olumsuzunu belirleme hususundaki yeterlikleri ve bu yeterliğin sınıf seviyesi açısından nasıl değişim gösterdiğinin incelenmesi amaçlanmıştır. Araştırmada veri toplama aracı olarak sembolik veya sözel olarak verilmiş matematiksel önermelerin olumsuzunu tanımayı gerektiren ve çoktan seçmeli formatta hazırlanmış toplam 8 sorudan oluşan bir test kullanılmıştır. Araştırmanın katılımcıların bir devlet üniversitesinin ilköğretim matematik öğretmenliği programının tüm sınıf seviyelerin öğrenim görmekte olan 194 ilköğretim matematik öğretmeni adayı oluşturmaktadır. Araştırmadan elde edilen bulgular, odaklanılan beceri açısından 1. ve 2. sınıf öğrencileri ile 2. ve 3. sınıf öğrencileri arasında anlamlı farkın olduğunu göstermiştir. Bununla birlikte, sözel olarak ifade edilen önermeleri olumsuzlamanın sembolik olarak ifade edilen önermelere kıyasla daha zor olduğu saptanmıştır. Araştırmada elde edilen bir diğer sonuç, önermeleri sözel olarak ifade etmede benimsenen üslubun önermeleri olumsuzlamada etkili olduğudur.
Etik Beyan
Araştırma için Trabzon Üniversitesi Sosyal ve Beşeri Bilimler Bilimsel Araştırma ve Yayın Etiği Kurulu’ndan 01.04.2024 tarih ve 2024-3/3.6 sayılı karar ile etik kurul izni alınmıştır.
Kaynakça
- Anapa Saban, P., Yenilmez, K., & Çimen, E. E. (2014). Niceleyici içeren matematiksel ifadelere dair öğrenci algılarının karakterizasyonu. Bayburt Eğitim Fakültesi Dergisi, 9(1), 115-137.
- Antalyalı, L. Ö. (2010). Varyans analizi (Anova-Manova). Ş. Kalaycı (Ed.), SPSS uygulamalı çok değişkenli istatistik teknikleri (ss.130-182) içinde. Asil Yayın Dağıtım Ltd. Şti.
- Antonini, S. (2019). Intuitive acceptance of proof by contradiction. ZDM—Mathematics Education, 51(5), 793–806. https://doi.org/10.1007/s11858-019-01066-4
- Antonini, S., & Mariotti, M. A. (2008). Indirect proof: What is specific to this way of proving? ZDM Mathematics Education, 40(3), 401–412. https://doi.org/10.1007/s11858-008-0091-2.
- Asar, O. A., Arıkan A., & Arıkan, A. (2022). Cebir. Palme Yay.
- Argün, Z., Arıkan, A., Bulut, S., & Halıcıoğlu, S. (2020). Temel matematik kavramlarının künyesi (2. baskı). Palme.
- Azrou, N., & Khelladi, A. (2019). Why do students write poor proof texts? A case study on undergraduates’ proof writing. Educational Studies in Mathematics, 102(2), 257–274. https://doi.org/10.1007/s10649-019-09911-9
- Baker, D., & Campbell, C. (2004). Fostering the development of mathematical thinking: Observations from a proofs course. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 14(4), 345-353. https://doi.org/10.1080/10511970408984098
- Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. J. Kilpatrick, W. G. Martin ve D. Schifter (Ed), A Research companion to principles and standards for school mathematics (s. 27–44) içinde. National Council of Teachers of Mathematics.
- Barnard, A. D. (1995). The impact of meaning on students’ ability to negate statements. L. Meira,& D. Carraher (Eds.) Proceedings of the nineteenth international conference for the psychology of mathematics education, (Vol. 2 pp. 3–10) içinde. Recife, Brazil.
- Baştürk, S. (2010). First‐year secondary school mathematics students’ conceptions of mathematical proofs and proving. Educational Studies, 36(3), 283-298. https://doi.org/10.1080/03055690903424964
- Bleiler, S. K., Thompson, D. R., & Krajcevski, M. (2014). Providing written feedback on students’ mathematical arguments: Proof validations of prospective secondary mathematics teachers. Journal of Mathematics Teacher Education, 17(2), 105–127. https://doi.org/10.1007/s10857-013-9248-1.
- Bond, T. G., Yan, Z., & Heene, M. (2021). Applying the Rasch model: Fundamental measurement in the human sciences (4th ed.). Routledge. https://doi.org/10.4324/9780429030499
- Boone, W. J. (2020). Rasch basics for the novice. M. S. Khine (Ed.). Rasch measurement: Applications in quantitative educational research (pp. 9-30) içinde. Springer. https://doi.org/10.1007/978-981-15-1800-3
- Boone, W. J., & Staver, J. R. (2020). Advances in Rasch analysis in the human sciences. Springer. https://doi.org/10.1007/978-3-030-43420-5
- Brown, S. A. (2018). Are indirect proofs less convincing? A study of students’ comparative assessments. Journal of Mathematical Behavior, 49, 1–23. https://doi.org/10.1016/j.jmathb.2016.12.010
- Çekmez, E. (2020). Öğretmen adaylarının önermelerinin sembolik ve sözel formları arasında tercüme yapabilme becerilerinin incelenmesi. Trakya Eğitim Dergisi, 10(2), 551-565. https://doi.org/10.24315/tred.642192.
- Çepni, S. (2007). Araştırma ve proje çalışmalarına giriş. Trabzon: Celepler Matbaacılık.
- Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education. London: Routledge Falmer.
Dawkins, P. C., & Zazkis, D. (2021). Using moment-by-moment reading protocols to understand students’ processes of reading mathematical proof. Journal for Research in Mathematics Education, 52(5), 510–538. https://doi.org/10.5951/jresematheduc-2020-0151
- Dogan, M. F., & Williams-Pierce, C. (2021). The role of generic examples in teachers’ proving activities. Educational Studies in Mathematics, 106(1), 133–150. https://doi.org/10.1007/s10649-020-10002-3
- Doruk, M., & Kaplan, A. (2018). Matematik öğretmeni adaylarının analiz alanında ters örnek üretme becerileri. Ondokuz Mayis University Journal of Education Faculty, 37(1), 97-115. https://doi.org/10.7822/omuefd.310076
- Dubinsky, E., & Yiparaki, O. (2000). On student understanding of AE and EA quantification. E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), CMBS issues in mathematics education (pp. 239-289) içinde. American Mathematical Society.
- Fujita, T., Jones, K., & Miyazaki, M. (2018). Learners’ use of domain-specific computer-based feedback to overcome logical circularity in deductive proving in geometry. ZDM—Mathematics Education, 50(4), 699–713. https://doi.org/10.1007/s11858-018-0950-4
- Güler, G., Özdemir, E., & Dikici, R. (2012). Öğretmen adaylarının matematiksel tümevarım yoluyla ispat becerileri ve matematiksel ispat hakkındaki görüşleri. Kastamonu Eğitim Dergisi, 20(1), 219-236.
- Hanna, G., & Yan, X. (2021). Opening a discussion on teaching proof with automated theorem provers. For the Learning of Mathematics, 41(3), 42–46. https://www.jstor.org/stable/27091220
- Karpuz, Y., & Atasoy, E. (2020). High school mathematics teachers’ content knowledge of the logical structure of proof deriving from figural-concept interaction in geometry. International Journal of Mathematical Education in Science and Technology, 51(4), 585–603. https://doi.org/10.1080/0020739x.2020.1736347
- Kehoe, J. (1994). Basic item analysis for multiple-choice tests. Practical Assessment, Research, and Evaluation 4(1), 10. https://doi.org/10.7275/07zg-h235
- Knuth, E. J. (2002). Secondary school mathematics teachers' conceptions of proof. Journal for Research in Mathematics Education, 33(5), 379. https://doi.org/10.2307/4149959
- Knuth, E., Zaslavsky, O., & Ellis, A. (2019). The role and use of examples in learning to prove. Journal of Mathematical Behavior, 53, 256–262. https://doi.org/10.1016/j.jmathb.2017.06.002
- Lew, K., & Zazkis, D. (2019). Undergraduate mathematics students’ at-home exploration of a prove-or-disprove task. Journal of Mathematical Behavior, 54, 100674. https://doi.org/10.1016/j.jmathb.2018.09.003
- Lin, F. L., Lee, Y. S., & Wu Yu, J. Y. (2003). Students’ understanding of proof by contradiction. In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.) Proceedings of the 2003 Joint Meeting of PME and PME-NA, (Vol. 4 pp. 443-449). Honolulu.
- Linacre, J. M. (2022, 08 20). A user quide to Winsteps Ministep Rasch model computer programs. Winteps: https://www.winsteps.com/a/Winsteps-Manual.pdf adresinden alındı
- Moore, R. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27(3), 249-266. https://doi.org/10.1007/bf01273731
- Öztürk, T., & Demirel, D. (2022). Türkiye’de ispat üzerine yapılan çalışmaların analizi: Bir sistematik derleme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 54, 32-68. https://doi.org/10.9779/pauefd.782832.
- Öztürk, M., Akkan, Y. & Kaplan, A. (2019). Sınıf öğretmenliği öğrencilerinin temel matematik ispatlarını yapma sürecindeki bilişsel yapılar ve argümanları. Cumhuriyet International Journal of Education, 8(2), 429-452. http://dx.doi.org/10.30703/cije.490887
- Pallant, J. (2020). SPSS survival manual (6th ed.). Routledge. https://doi.org/10.4324/9781003117407
- Piatek-Jimenez, K. (2010). students’ interpretations of mathematical statements involving quantification. Mathematics Education Research Journal, 22(3), 41-56. https://doi.org/10.1007/bf03219777
- Rogers, K. C., & Kosko, K. W. (2019). How elementary and collegiate instructors envision tasks as supportive of mathematical argumentation: A comparison of instructors’ task constructions. Journal of Mathematical Behavior, 53, 228–241. https://doi.org/10.1016/j.jmathb.2018.08.004
- Schoenfeld, A. H. (2009). Series editor’s foreword: The soul of mathematics. D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and Learning Proof Across the Grades: A K-16 Perspective (s. xii–xvi) içinde. Routledge.
- Stylianou, D., Blanton, M., & Rotou, O. (2015). Undergraduate students’ understanding of proof: relationships between proof conceptions, beliefs, and classroom experiences with learning proof. International Journal of Research in Undergraduate Mathematics Education, 1(1), 91-134. https://doi.org/10.1007/s40753-015-0003-0
- Stylianides, G. J., Stylianides, A. J., & Moutsios-Rentzos, A. (2024). Proof and proving in school and university mathematics education research: A systematic review. ZDM–Mathematics Education, 56, 47-59. https://doi.org/10.1007/s11858-023-01518-y
- Tall, D. (2014). Making sense of mathematical reasoning and proof. In M. N. Fried, & T. Dreyfus (Eds.). Mathematics and mathematics education: Searching for common ground (pp. 223–235). Springer. https://doi.org/10.1007/978-94-007-7473-5_13
- Uygur-Kabael, T. (2020). İspat ve ispatlamada bazı temel kavramlar. I. Uğurel (Ed.), Matematiksel ispat ve öğretimi (ss. 41-68) içinde. Anı Yayıncılık.
- Wright, B. D., & Linacre, J. M. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions, 8(3), 370.
- Zhuang, Y., & Conner, A. (2022). Secondary mathematics teachers’ use of students’ incorrect answers in supporting collective argumentation. Mathematical Thinking and Learning, 26(2), 208-231. https://doi. org/10.1080/10986065.2022.2067932
Examining the Competencies of Mathematics Teacher Candidates in Determining the Negations of Propositions
Yıl 2024,
Sayı: 62, 3296 - 3313, 30.12.2024
Erdem Çekmez
,
Mustafa Güler
Öz
This study aims to investigate the competencies of mathematics teacher candidates in discerning the negations of mathematical propositions. A test comprising 8 multiple-choice questions, designed to assess the ability to identify the negations of mathematical propositions presented symbolically or verbally, served as the primary data collection instrument. The research cohort comprised 194 candidates enrolled in the primary mathematics teaching program at a state university across all grade levels. Analysis of the findings revealed a notable disparity in the competency levels between 1st and 2nd grade students, as well as between 2nd and 3rd grade students concerning the targeted skill. Moreover, the study identified that negating verbally expressed propositions posed greater difficulty compared to symbolically expressed propositions. Additionally, the manner in which propositions were verbally articulated was found to influence the ease of negation.
Kaynakça
- Anapa Saban, P., Yenilmez, K., & Çimen, E. E. (2014). Niceleyici içeren matematiksel ifadelere dair öğrenci algılarının karakterizasyonu. Bayburt Eğitim Fakültesi Dergisi, 9(1), 115-137.
- Antalyalı, L. Ö. (2010). Varyans analizi (Anova-Manova). Ş. Kalaycı (Ed.), SPSS uygulamalı çok değişkenli istatistik teknikleri (ss.130-182) içinde. Asil Yayın Dağıtım Ltd. Şti.
- Antonini, S. (2019). Intuitive acceptance of proof by contradiction. ZDM—Mathematics Education, 51(5), 793–806. https://doi.org/10.1007/s11858-019-01066-4
- Antonini, S., & Mariotti, M. A. (2008). Indirect proof: What is specific to this way of proving? ZDM Mathematics Education, 40(3), 401–412. https://doi.org/10.1007/s11858-008-0091-2.
- Asar, O. A., Arıkan A., & Arıkan, A. (2022). Cebir. Palme Yay.
- Argün, Z., Arıkan, A., Bulut, S., & Halıcıoğlu, S. (2020). Temel matematik kavramlarının künyesi (2. baskı). Palme.
- Azrou, N., & Khelladi, A. (2019). Why do students write poor proof texts? A case study on undergraduates’ proof writing. Educational Studies in Mathematics, 102(2), 257–274. https://doi.org/10.1007/s10649-019-09911-9
- Baker, D., & Campbell, C. (2004). Fostering the development of mathematical thinking: Observations from a proofs course. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 14(4), 345-353. https://doi.org/10.1080/10511970408984098
- Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. J. Kilpatrick, W. G. Martin ve D. Schifter (Ed), A Research companion to principles and standards for school mathematics (s. 27–44) içinde. National Council of Teachers of Mathematics.
- Barnard, A. D. (1995). The impact of meaning on students’ ability to negate statements. L. Meira,& D. Carraher (Eds.) Proceedings of the nineteenth international conference for the psychology of mathematics education, (Vol. 2 pp. 3–10) içinde. Recife, Brazil.
- Baştürk, S. (2010). First‐year secondary school mathematics students’ conceptions of mathematical proofs and proving. Educational Studies, 36(3), 283-298. https://doi.org/10.1080/03055690903424964
- Bleiler, S. K., Thompson, D. R., & Krajcevski, M. (2014). Providing written feedback on students’ mathematical arguments: Proof validations of prospective secondary mathematics teachers. Journal of Mathematics Teacher Education, 17(2), 105–127. https://doi.org/10.1007/s10857-013-9248-1.
- Bond, T. G., Yan, Z., & Heene, M. (2021). Applying the Rasch model: Fundamental measurement in the human sciences (4th ed.). Routledge. https://doi.org/10.4324/9780429030499
- Boone, W. J. (2020). Rasch basics for the novice. M. S. Khine (Ed.). Rasch measurement: Applications in quantitative educational research (pp. 9-30) içinde. Springer. https://doi.org/10.1007/978-981-15-1800-3
- Boone, W. J., & Staver, J. R. (2020). Advances in Rasch analysis in the human sciences. Springer. https://doi.org/10.1007/978-3-030-43420-5
- Brown, S. A. (2018). Are indirect proofs less convincing? A study of students’ comparative assessments. Journal of Mathematical Behavior, 49, 1–23. https://doi.org/10.1016/j.jmathb.2016.12.010
- Çekmez, E. (2020). Öğretmen adaylarının önermelerinin sembolik ve sözel formları arasında tercüme yapabilme becerilerinin incelenmesi. Trakya Eğitim Dergisi, 10(2), 551-565. https://doi.org/10.24315/tred.642192.
- Çepni, S. (2007). Araştırma ve proje çalışmalarına giriş. Trabzon: Celepler Matbaacılık.
- Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education. London: Routledge Falmer.
Dawkins, P. C., & Zazkis, D. (2021). Using moment-by-moment reading protocols to understand students’ processes of reading mathematical proof. Journal for Research in Mathematics Education, 52(5), 510–538. https://doi.org/10.5951/jresematheduc-2020-0151
- Dogan, M. F., & Williams-Pierce, C. (2021). The role of generic examples in teachers’ proving activities. Educational Studies in Mathematics, 106(1), 133–150. https://doi.org/10.1007/s10649-020-10002-3
- Doruk, M., & Kaplan, A. (2018). Matematik öğretmeni adaylarının analiz alanında ters örnek üretme becerileri. Ondokuz Mayis University Journal of Education Faculty, 37(1), 97-115. https://doi.org/10.7822/omuefd.310076
- Dubinsky, E., & Yiparaki, O. (2000). On student understanding of AE and EA quantification. E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), CMBS issues in mathematics education (pp. 239-289) içinde. American Mathematical Society.
- Fujita, T., Jones, K., & Miyazaki, M. (2018). Learners’ use of domain-specific computer-based feedback to overcome logical circularity in deductive proving in geometry. ZDM—Mathematics Education, 50(4), 699–713. https://doi.org/10.1007/s11858-018-0950-4
- Güler, G., Özdemir, E., & Dikici, R. (2012). Öğretmen adaylarının matematiksel tümevarım yoluyla ispat becerileri ve matematiksel ispat hakkındaki görüşleri. Kastamonu Eğitim Dergisi, 20(1), 219-236.
- Hanna, G., & Yan, X. (2021). Opening a discussion on teaching proof with automated theorem provers. For the Learning of Mathematics, 41(3), 42–46. https://www.jstor.org/stable/27091220
- Karpuz, Y., & Atasoy, E. (2020). High school mathematics teachers’ content knowledge of the logical structure of proof deriving from figural-concept interaction in geometry. International Journal of Mathematical Education in Science and Technology, 51(4), 585–603. https://doi.org/10.1080/0020739x.2020.1736347
- Kehoe, J. (1994). Basic item analysis for multiple-choice tests. Practical Assessment, Research, and Evaluation 4(1), 10. https://doi.org/10.7275/07zg-h235
- Knuth, E. J. (2002). Secondary school mathematics teachers' conceptions of proof. Journal for Research in Mathematics Education, 33(5), 379. https://doi.org/10.2307/4149959
- Knuth, E., Zaslavsky, O., & Ellis, A. (2019). The role and use of examples in learning to prove. Journal of Mathematical Behavior, 53, 256–262. https://doi.org/10.1016/j.jmathb.2017.06.002
- Lew, K., & Zazkis, D. (2019). Undergraduate mathematics students’ at-home exploration of a prove-or-disprove task. Journal of Mathematical Behavior, 54, 100674. https://doi.org/10.1016/j.jmathb.2018.09.003
- Lin, F. L., Lee, Y. S., & Wu Yu, J. Y. (2003). Students’ understanding of proof by contradiction. In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.) Proceedings of the 2003 Joint Meeting of PME and PME-NA, (Vol. 4 pp. 443-449). Honolulu.
- Linacre, J. M. (2022, 08 20). A user quide to Winsteps Ministep Rasch model computer programs. Winteps: https://www.winsteps.com/a/Winsteps-Manual.pdf adresinden alındı
- Moore, R. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27(3), 249-266. https://doi.org/10.1007/bf01273731
- Öztürk, T., & Demirel, D. (2022). Türkiye’de ispat üzerine yapılan çalışmaların analizi: Bir sistematik derleme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 54, 32-68. https://doi.org/10.9779/pauefd.782832.
- Öztürk, M., Akkan, Y. & Kaplan, A. (2019). Sınıf öğretmenliği öğrencilerinin temel matematik ispatlarını yapma sürecindeki bilişsel yapılar ve argümanları. Cumhuriyet International Journal of Education, 8(2), 429-452. http://dx.doi.org/10.30703/cije.490887
- Pallant, J. (2020). SPSS survival manual (6th ed.). Routledge. https://doi.org/10.4324/9781003117407
- Piatek-Jimenez, K. (2010). students’ interpretations of mathematical statements involving quantification. Mathematics Education Research Journal, 22(3), 41-56. https://doi.org/10.1007/bf03219777
- Rogers, K. C., & Kosko, K. W. (2019). How elementary and collegiate instructors envision tasks as supportive of mathematical argumentation: A comparison of instructors’ task constructions. Journal of Mathematical Behavior, 53, 228–241. https://doi.org/10.1016/j.jmathb.2018.08.004
- Schoenfeld, A. H. (2009). Series editor’s foreword: The soul of mathematics. D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and Learning Proof Across the Grades: A K-16 Perspective (s. xii–xvi) içinde. Routledge.
- Stylianou, D., Blanton, M., & Rotou, O. (2015). Undergraduate students’ understanding of proof: relationships between proof conceptions, beliefs, and classroom experiences with learning proof. International Journal of Research in Undergraduate Mathematics Education, 1(1), 91-134. https://doi.org/10.1007/s40753-015-0003-0
- Stylianides, G. J., Stylianides, A. J., & Moutsios-Rentzos, A. (2024). Proof and proving in school and university mathematics education research: A systematic review. ZDM–Mathematics Education, 56, 47-59. https://doi.org/10.1007/s11858-023-01518-y
- Tall, D. (2014). Making sense of mathematical reasoning and proof. In M. N. Fried, & T. Dreyfus (Eds.). Mathematics and mathematics education: Searching for common ground (pp. 223–235). Springer. https://doi.org/10.1007/978-94-007-7473-5_13
- Uygur-Kabael, T. (2020). İspat ve ispatlamada bazı temel kavramlar. I. Uğurel (Ed.), Matematiksel ispat ve öğretimi (ss. 41-68) içinde. Anı Yayıncılık.
- Wright, B. D., & Linacre, J. M. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions, 8(3), 370.
- Zhuang, Y., & Conner, A. (2022). Secondary mathematics teachers’ use of students’ incorrect answers in supporting collective argumentation. Mathematical Thinking and Learning, 26(2), 208-231. https://doi. org/10.1080/10986065.2022.2067932