Fen Eğitiminde Sistemsel Düşünme Üzerine Yapılan Çalışmaların Meta- Analizi
Yıl 2025,
Sayı: 64, 2476 - 2505, 30.06.2025
İbrahim Enes Tosun
,
Ümmühan Ormancı
,
Şirin İlkörücü
Öz
Bu çalışma, fen eğitiminde sistemsel düşünme yaklaşımını benimseyen çalışmaların meta-analizini gerçekleştirmiştir. Ayrıntılı bir literatür taraması yapılmış, önde gelen yazarlar belirlemiş ve sistemsel düşünmenin temel özellikleri bir tablo halinde sentezlemiştir. Araştırma için akademik makaleler, Web of Science, SCOPUS, ERIC ve Science Direct veri tabanlarından belirlenmiş kriterlere göre seçilmiştir. 'Sistemsel Düşünme' anahtar kelimesini içeren ve nicel ya da karma yöntemleri kullanan 31 makale arasından yinelenenlerin çıkarılması ve belirlenen daraltma kriterlerin uygulanması sonrasında 12 makale çalışmaya dahil edilmiştir. Güvenilirliği artırmak amacıyla Bias Tool ve PRISMA-P protokolleri kullanılmıştır. Çalışma, sistemsel düşünmenin fen eğitimindeki akademik çıktılar üzerindeki etkisini öncelikli olarak incelemiş, bu yaklaşımın farklı alt disiplinlerdeki faydalarını ve çeşitli eğitim strateji ve yöntemlerinin etkinliğini değerlendirmiştir. Örneklem büyüklükleri, standart sapmalar ve ortalamalar gibi önemli istatistiksel ölçümler toplanmıştır. Ayrıca, çalışmalardan elde edilen 26 değişken için etki büyüklükleri ve %95 güven aralıkları hesaplanarak bir orman grafiği ile görselleştirilmiştir. Çalışmalar arasındaki heterojenliği değerlendirmek amacıyla Cochran’ın Q testi ve I² istatistiği kullanılmış ve Q değeri (Q = 1.784, p = 1.000) ile I² değeri (%0) hesaplanmıştır. Genel etki büyüklüğü yaklaşık olarak ".47" olarak hesaplanmıştır. Bu sonuç fen eğitimi alanında sistemsel düşünme yaklaşımının orta düzeyde bir etkililiğe sahip olduğunu ve çeşitli alt disiplinlerde avantajlı bir şekilde kullanılabileceğini göstermiştir.
Kaynakça
-
Aksoy Kürü, S. (2021). Meta-Analiz. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (42), 215-229. https://doi.org/10.30794/pausbed.803061
-
Arnold, R. D., & Wade, J. P. (2015). A definition of systems thinking: A systems approach. Procedia Computer Science, 44, 669–678. https://doi.org/10.1016/j.procs.2015.03.050
-
Arnold, R. D., & Wade, J. P. (2017). A complete set of systems thinking skills. Insight, 20(3), 9-17. https://doi.org/10.1002/inst.12159
-
Assaraf, O. B. Z., & Knippels, M. C. P. Fostering understanding of complex systems in biology education. Cham: Springer. https://doi.org/10.1007/978-3-030-98144-0
-
Ateskan, A., & Lane, J. F. (2018). Assessing teachers’ systems thinking skills during a professional development program in Turkey. Journal of Cleaner Production, 172, 4348-4356. https://doi.org/10.1016/j.jclepro.2017.05.094
-
Bakioğlu, A., & Göktaş, E. (2018). Bir eğitim politikası belirleme yöntemi: Meta-Analiz. Medeniyet Eğitim Araştırmaları Dergisi, 1(2), 35-54.
-
Bangert-Drowns, R. L., & Rudner, L. M. (1990). Meta-analysis in educational research. Practical Assessment, Research, and Evaluation, 2(1), 8. https://doi.org/10.7275/rw59-1m43
-
Bayraktar, Ş. (2020). Eğitimde meta-analiz çalışmaları. In B. Oral & A. Çoban (Eds.), Kuramdan uygulamaya eğitimde bilimsel araştırma yöntemleri (pp. 357-378). Pegem Akademi Yayıncılık.
-
Ben-Zvi Assaraf, O., & Orion, N. (2005). Development of system thinking skills in the context of Earth system education. Journal of Research in Science Teaching, 42(5), 518–560. https://doi.org/10.1002/tea.20061
-
Ben-Zvi Assaraf, O., & Orion, N. (2010). Four case studies, six years later: Developing system thinking skills in junior high school and sustaining them over time. Science Teaching, 47(10), 1253–1280. https://doi.org/10.1002/tea.20383
-
Ben-Zvi Assaraf, O., Dodick, J., & Tripto, J. (2013). High school students’ understanding of the human body system. Research in Science Education, 43(1), 33–56. https://doi.org/10.1007/s11165-011-9245-2
-
Borenstein, M., Cooper, H., Hedges, L., & Valentine, J. (2009). Effect sizes for continuous data. The handbook of research synthesis and meta-analysis, 2, 221–235.
-
Bowers, J., Eidin, E., Stephens, L., & Brennan, L. (2023). Examining student testing and debugging within a computational system modeling context. Journal of Science Education Technology, 32(4), 1–22. https://doi.org/10.1007/s10956-023-10049-w
-
Brandstädter, K., Harms, U., & Grossschedl, J. (2012). Assessing system thinking through different concept-mapping practices. International Journal of Science Education, 34(14), 2147-2170. https://doi.org/10.1080/09500693.2012.716549
-
Cohen, J. E. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge.
-
Cohen, L., & Manion, L. (2001). Research methods in education. Routledge.
-
Cooper, H. (1998). Synthesizing research: A guide for literature reviews. Sage.
-
Cooper, H., & Hedges, L. V. (Eds.) (1994). The handbook of research synthesis and meta-analysis (Vol. 236). Russell Sage Foundation.
-
Doganca Kucuk, Z., & Saysel, A. K. (2018). Developing seventh grade students’ understanding of complex environmental problems with systems tools and representations: A quasi-experimental study. Research in Science Education, 48, 491-514. https://doi.org/10.1007/s11165-017-9620-8
-
Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629
-
Elmas, R., Arslan, H. Ö., Pamuk, S., Pesman, H., & Sözbilir, M. (2021). Fen eğitiminde yeni bir yaklaşım olarak sistemsel düşünme. Türkiye Kimya Derneği Dergisi Kısım C: Kimya Eğitimi, 6(1), 107-132. https://doi.org/10.37995/jotcsc.889340
-
Evagorou, M., Korfiatis, K., Nicolaou, C., & Constantinou, C. (2009). An investigation of the potential of interactive simulations for developing system thinking skills in elementary school: A case study with fifth graders and sixth graders. International Journal of Science Education, 31(5), 655–674. https://doi.org/10.1080/09500690801998712
-
Field, A. P., & Gillett, R. (2010). How to do a meta-analysis. British Journal of Mathematical and Statistical Psychology, 63(3), 665–694. https://doi.org/10.1348/000711010x502733
-
Ghalichi, N., Schuchardt, A., & Roehrig, G. (2021). Systems object framework: A framework for describing students’ depiction of object organisation within systems. International Journal of Science Education, 43(10), 1618–1639. https://doi.org/10.1080/09500693.2021.1923855
-
Glass, G. (1977). Integrating findings: The meta-analysis of research. Review of Research in Education, 5, 351-379.
-
Gould‐Kreutzer, J. M. (1993). Foreword: System dynamics in education. System Dynamics Review, 9(2), 101-112.
-
Hedges, L. V., & Vevea, J. L. (1998). Fixed-and random-effects models in meta-analysis. Psychological Methods, 3(4), 486.
-
Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-560. https://doi.org/10.1136/bmj.327.7414.557
-
Hooijmans, C. R., Rovers, M. M., De Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14, 1-9. https://doi.org/10.1186/1471-2288-14-43
-
Hür, G. (2021). PRISMA kontrol listesi 2020 güncellemesi. Online Türk Sağlık Bilimleri Dergisi, 6(4), 603-605. https://doi.org/10.26453/otjhs.1001606
-
Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. The Journal of the Learning Sciences, 15(1), 11–34. https://doi.org/10.1207/s15327809jls1501_4
-
Kali, Y., Orion, N., & Eylon, B. S. (2003). Effect of knowledge integration activities on students' perception of the Earth's crust as a cyclic system. Journal of Research in Science Teaching, 40(6), 545-565. https://doi.org/10.1002/tea.10096
-
Karaaslan-Semiz, G., & Teksöz, G. (2019). Sistemsel düşünme becerilerinin tanımlanması, ölçülmesi ve değerlendirilmesi üzerine bir çalışma: Kavram haritaları. Başkent University Journal of Education, 6(1), 111-126.
-
Karaca, D., Aydın, B., & Atılgan, H. (2024). Eğitim Araştırmalarında Çok Düzeyli Meta-Analiz Modelleri: Örnek Uygulamalı Bir Rehber. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (61), 2502-2530. https://doi.org/10.53444/deubefd.1476011
-
McGuinness, L. A., & Higgins, J. P. (2021). Risk‐of‐bias VISualization (robvis): An R package and Shiny web app for visualizing risk‐of‐bias assessments. Research Synthesis Methods, 12(1), 55-61.
-
Mahaffy, P. G., Krief, A., Hopf, H., Mehta, G., & Matlin, S. A. (2018). Reorienting chemistry education through systems thinking. Nature Reviews Chemistry, 2(4), 13. https://doi.org/10.1038/s41570-018-0126
-
Mehren, R., Rempfler, A., Buchholz, J., Hartig, J., & Ulrich‐Riedhammer, E. M. (2018). System competence modelling: Theoretical foundation and empirical validation of a model involving natural, social, and human‐environment systems. Journal of Research in Science Teaching, 55(5), 685-711. https://doi.org/10.1002/tea.21436
-
Orgill, M. K., York, S., & Mackellar, J. (2019). Introduction to systems thinking for the chemistry education community. Journal of Chemical Education, 96(12), 2720-2729. https://doi.org/10.1021/acs.jchemed.9b00169
-
Pazicni, S., & Flynn, A. B. (2019). Systems thinking in chemistry education: Theoretical challenges and opportunities. Journal of Chemical Education, 96(12), 2752-2763. https://doi.org/10.1021/acs.jchemed.9b00416
-
Richmond, B. (1994). Systems dynamics/systems thinking: Let’s just get on with it. System Dynamics Review, 10(2-3), 135-157.
-
Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111-139.
-
Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., & Petticrew, M. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ, 349, 7647–7647. https://doi.org/10.1136/bmj.g7647
-
Sommer, C., & Lücken, M. (2010). System competence – Are elementary students able to deal with a biological system? Nordic Studies in Science Education, 6(2), 125-143.
-
Sweeney, L. B., & Sterman, J. D. (2000). Bathtub dynamics: Initial results of a systems thinking inventory. System Dynamics Review, 16(4), 249–286. https://doi.org/10.1002/sdr.198
-
Thalheimer, W., & Cook, S. (2002). How to calculate effect sizes from published research: A simplified methodology. Work-Learning Research, 1(9), 1-9. http://education.gsu.edu/coshima/EPRS8530/Effect_Sizes_pdf4.pdf
-
Vachliotis, T., Salta, K., & Tzougraki, C. (2014). Meaningful understanding and systems thinking in organic chemistry: Validating measurement and exploring relationships. Research in Science Education, 44, 239-266.
Meta-Analysis of Systems Thinking Studies in Science Education
Yıl 2025,
Sayı: 64, 2476 - 2505, 30.06.2025
İbrahim Enes Tosun
,
Ümmühan Ormancı
,
Şirin İlkörücü
Öz
This study undertakes a meta-analysis of the systems thinking approach, which has become increasingly significant in science education. A detailed literature review identified preeminent authors and synthesized the key features of systems thinking into a table. Scholarly articles for the research were carefully chosen according to well-defined criteria from established databases, including Web of Science, SCOPUS, ERIC, and Science Direct. Of 31 articles that employed quantitative or mixed methods and included the keyword "Systems Thinking," 12 were retained after duplicate removal and criterion application. To enhance analytical reliability, the Bias Tool and PRISMA-P protocols were employed. This study primarily explored how systems thinking influences academic outcomes in science education, assessing its utility across different sub-disciplines and the effectiveness of various educational strategies and methods. Key statistical metrics such as sample sizes, standard deviations, and means were collected. Additionally, Cohen's effect sizes and 95% confidence intervals for 26 variables drawn from the studies were calculated and illustrated in a forest plot. A heterogeneity analysis was conducted using Cochran’s Q test and the I² statistic, yielding a non-significant Q value (Q = 1.784, p = 1.000) and an I² value of 0%. These results confirmed the absence of substantial heterogeneity among the studies, supporting using a fixed-effects model to compute the overall effect size, estimated at ".47". This outcome reveals a moderate level of efficacy for the systems thinking approach within science education, indicating its advantageous use across various sub-disciplines.
Etik Beyan
Bu çalışmada, “Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi” kapsamında uyulması gereken tüm kurallara uyulmuştur. Ayrıca “Bilimsel Araştırma ve Yayın Etiğine Aykırı Eylemler” başlığı altında belirtilen eylemlerden hiçbirinin gerçekleştirilmemiştir.
Kaynakça
-
Aksoy Kürü, S. (2021). Meta-Analiz. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (42), 215-229. https://doi.org/10.30794/pausbed.803061
-
Arnold, R. D., & Wade, J. P. (2015). A definition of systems thinking: A systems approach. Procedia Computer Science, 44, 669–678. https://doi.org/10.1016/j.procs.2015.03.050
-
Arnold, R. D., & Wade, J. P. (2017). A complete set of systems thinking skills. Insight, 20(3), 9-17. https://doi.org/10.1002/inst.12159
-
Assaraf, O. B. Z., & Knippels, M. C. P. Fostering understanding of complex systems in biology education. Cham: Springer. https://doi.org/10.1007/978-3-030-98144-0
-
Ateskan, A., & Lane, J. F. (2018). Assessing teachers’ systems thinking skills during a professional development program in Turkey. Journal of Cleaner Production, 172, 4348-4356. https://doi.org/10.1016/j.jclepro.2017.05.094
-
Bakioğlu, A., & Göktaş, E. (2018). Bir eğitim politikası belirleme yöntemi: Meta-Analiz. Medeniyet Eğitim Araştırmaları Dergisi, 1(2), 35-54.
-
Bangert-Drowns, R. L., & Rudner, L. M. (1990). Meta-analysis in educational research. Practical Assessment, Research, and Evaluation, 2(1), 8. https://doi.org/10.7275/rw59-1m43
-
Bayraktar, Ş. (2020). Eğitimde meta-analiz çalışmaları. In B. Oral & A. Çoban (Eds.), Kuramdan uygulamaya eğitimde bilimsel araştırma yöntemleri (pp. 357-378). Pegem Akademi Yayıncılık.
-
Ben-Zvi Assaraf, O., & Orion, N. (2005). Development of system thinking skills in the context of Earth system education. Journal of Research in Science Teaching, 42(5), 518–560. https://doi.org/10.1002/tea.20061
-
Ben-Zvi Assaraf, O., & Orion, N. (2010). Four case studies, six years later: Developing system thinking skills in junior high school and sustaining them over time. Science Teaching, 47(10), 1253–1280. https://doi.org/10.1002/tea.20383
-
Ben-Zvi Assaraf, O., Dodick, J., & Tripto, J. (2013). High school students’ understanding of the human body system. Research in Science Education, 43(1), 33–56. https://doi.org/10.1007/s11165-011-9245-2
-
Borenstein, M., Cooper, H., Hedges, L., & Valentine, J. (2009). Effect sizes for continuous data. The handbook of research synthesis and meta-analysis, 2, 221–235.
-
Bowers, J., Eidin, E., Stephens, L., & Brennan, L. (2023). Examining student testing and debugging within a computational system modeling context. Journal of Science Education Technology, 32(4), 1–22. https://doi.org/10.1007/s10956-023-10049-w
-
Brandstädter, K., Harms, U., & Grossschedl, J. (2012). Assessing system thinking through different concept-mapping practices. International Journal of Science Education, 34(14), 2147-2170. https://doi.org/10.1080/09500693.2012.716549
-
Cohen, J. E. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge.
-
Cohen, L., & Manion, L. (2001). Research methods in education. Routledge.
-
Cooper, H. (1998). Synthesizing research: A guide for literature reviews. Sage.
-
Cooper, H., & Hedges, L. V. (Eds.) (1994). The handbook of research synthesis and meta-analysis (Vol. 236). Russell Sage Foundation.
-
Doganca Kucuk, Z., & Saysel, A. K. (2018). Developing seventh grade students’ understanding of complex environmental problems with systems tools and representations: A quasi-experimental study. Research in Science Education, 48, 491-514. https://doi.org/10.1007/s11165-017-9620-8
-
Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629
-
Elmas, R., Arslan, H. Ö., Pamuk, S., Pesman, H., & Sözbilir, M. (2021). Fen eğitiminde yeni bir yaklaşım olarak sistemsel düşünme. Türkiye Kimya Derneği Dergisi Kısım C: Kimya Eğitimi, 6(1), 107-132. https://doi.org/10.37995/jotcsc.889340
-
Evagorou, M., Korfiatis, K., Nicolaou, C., & Constantinou, C. (2009). An investigation of the potential of interactive simulations for developing system thinking skills in elementary school: A case study with fifth graders and sixth graders. International Journal of Science Education, 31(5), 655–674. https://doi.org/10.1080/09500690801998712
-
Field, A. P., & Gillett, R. (2010). How to do a meta-analysis. British Journal of Mathematical and Statistical Psychology, 63(3), 665–694. https://doi.org/10.1348/000711010x502733
-
Ghalichi, N., Schuchardt, A., & Roehrig, G. (2021). Systems object framework: A framework for describing students’ depiction of object organisation within systems. International Journal of Science Education, 43(10), 1618–1639. https://doi.org/10.1080/09500693.2021.1923855
-
Glass, G. (1977). Integrating findings: The meta-analysis of research. Review of Research in Education, 5, 351-379.
-
Gould‐Kreutzer, J. M. (1993). Foreword: System dynamics in education. System Dynamics Review, 9(2), 101-112.
-
Hedges, L. V., & Vevea, J. L. (1998). Fixed-and random-effects models in meta-analysis. Psychological Methods, 3(4), 486.
-
Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-560. https://doi.org/10.1136/bmj.327.7414.557
-
Hooijmans, C. R., Rovers, M. M., De Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14, 1-9. https://doi.org/10.1186/1471-2288-14-43
-
Hür, G. (2021). PRISMA kontrol listesi 2020 güncellemesi. Online Türk Sağlık Bilimleri Dergisi, 6(4), 603-605. https://doi.org/10.26453/otjhs.1001606
-
Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. The Journal of the Learning Sciences, 15(1), 11–34. https://doi.org/10.1207/s15327809jls1501_4
-
Kali, Y., Orion, N., & Eylon, B. S. (2003). Effect of knowledge integration activities on students' perception of the Earth's crust as a cyclic system. Journal of Research in Science Teaching, 40(6), 545-565. https://doi.org/10.1002/tea.10096
-
Karaaslan-Semiz, G., & Teksöz, G. (2019). Sistemsel düşünme becerilerinin tanımlanması, ölçülmesi ve değerlendirilmesi üzerine bir çalışma: Kavram haritaları. Başkent University Journal of Education, 6(1), 111-126.
-
Karaca, D., Aydın, B., & Atılgan, H. (2024). Eğitim Araştırmalarında Çok Düzeyli Meta-Analiz Modelleri: Örnek Uygulamalı Bir Rehber. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (61), 2502-2530. https://doi.org/10.53444/deubefd.1476011
-
McGuinness, L. A., & Higgins, J. P. (2021). Risk‐of‐bias VISualization (robvis): An R package and Shiny web app for visualizing risk‐of‐bias assessments. Research Synthesis Methods, 12(1), 55-61.
-
Mahaffy, P. G., Krief, A., Hopf, H., Mehta, G., & Matlin, S. A. (2018). Reorienting chemistry education through systems thinking. Nature Reviews Chemistry, 2(4), 13. https://doi.org/10.1038/s41570-018-0126
-
Mehren, R., Rempfler, A., Buchholz, J., Hartig, J., & Ulrich‐Riedhammer, E. M. (2018). System competence modelling: Theoretical foundation and empirical validation of a model involving natural, social, and human‐environment systems. Journal of Research in Science Teaching, 55(5), 685-711. https://doi.org/10.1002/tea.21436
-
Orgill, M. K., York, S., & Mackellar, J. (2019). Introduction to systems thinking for the chemistry education community. Journal of Chemical Education, 96(12), 2720-2729. https://doi.org/10.1021/acs.jchemed.9b00169
-
Pazicni, S., & Flynn, A. B. (2019). Systems thinking in chemistry education: Theoretical challenges and opportunities. Journal of Chemical Education, 96(12), 2752-2763. https://doi.org/10.1021/acs.jchemed.9b00416
-
Richmond, B. (1994). Systems dynamics/systems thinking: Let’s just get on with it. System Dynamics Review, 10(2-3), 135-157.
-
Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111-139.
-
Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., & Petticrew, M. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ, 349, 7647–7647. https://doi.org/10.1136/bmj.g7647
-
Sommer, C., & Lücken, M. (2010). System competence – Are elementary students able to deal with a biological system? Nordic Studies in Science Education, 6(2), 125-143.
-
Sweeney, L. B., & Sterman, J. D. (2000). Bathtub dynamics: Initial results of a systems thinking inventory. System Dynamics Review, 16(4), 249–286. https://doi.org/10.1002/sdr.198
-
Thalheimer, W., & Cook, S. (2002). How to calculate effect sizes from published research: A simplified methodology. Work-Learning Research, 1(9), 1-9. http://education.gsu.edu/coshima/EPRS8530/Effect_Sizes_pdf4.pdf
-
Vachliotis, T., Salta, K., & Tzougraki, C. (2014). Meaningful understanding and systems thinking in organic chemistry: Validating measurement and exploring relationships. Research in Science Education, 44, 239-266.