Araştırma Makalesi
BibTex RIS Kaynak Göster

The Biaxial Tension-Compression Test Device for the Biomechanical Characterization of Soft Tissue

Yıl 2026, Cilt: 28 Sayı: 82, 77 - 82, 27.01.2026
https://doi.org/10.21205/deufmd.2026288210

Öz

The current biaxial industrial devices used to characterize the mechanical behavior of anisotropic materials in two axes are quite costly. In this study, a simple, economical and practical biaxial tension-compression device that is compatible with universal tensile test machines is developed. It is implemented on Achilles tendon which shows a nonlinear anisotropic mechanical response. The device consists of structural components that transfer loads, linear rails and cars that allow motion, grippers that fixate the specimen, strain gauges and a data acquisition unit. Initially, specimens, obtained from a slaughter shop, were harvested, re-sectioned with a “cross (+)” sign, in which one of the directions is aligned parallel to the fiber directions and the other is directed perpendicular to the fibers. The specimens were tested with the developed device. The collected measurements were filtered. Then, they were evaluated in the Ogden material model to identify the specimen-specific material parameters using curve fitting techniques. The portable and economical device developed in this study and the methodological approach used have the potential to make significant contributions to the field of anisotropic soft tissue biomechanics.

Kaynakça

  • Humphrey JD. Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society of London Series A 2003:3–46. doi:10.1098/rspa.2002.1060.
  • Pereira AB, Fernandes FAO, de Morais AB, Maio. Biaxial Testing Machine: Development and Evaluation. Machines 2023;16. doi:10.3390/machines8030040.
  • Corti A, Shameen T, Sharma S, De Paolis A, Cardoso L. Biaxial testing system for characterization of mechanical and rupture properties of small samples. Open Hardware Journal 2022;20. doi:10.1016/j.ohx.2022.e00333.
  • Shiwarskia DJ, Tashman JW, Eaton AF, Apodaca G, Feinberg AW. 3D printed biaxial stretcher compatible with live fluorescence microscopy. Zenodo 2020;23. doi:10.5281/zenodo.3483849.
  • Sacks MS, Sun W. Multiaxial Mechanical Behavior of Biological Tissues. Annual Review of Biomedical Engineering 2003;5:251-84. doi:10.1146/annurev.bioeng.5.011303.120714.
  • Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity and the Physical Science of Solids 2000:1–3. doi:10.1023/A:1010835316564.
  • Lanir Y, Fung YC. Two-dimensional mechanical properties of rabbit skin—I. Journal of Biomechanics 1974:29–34. doi:10.1016/0021-9290(74)90067-0.
  • Sun W, Sacks MS, Scott MJ. Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues. ASME J Biomech Eng 2005;127(4):709–15. doi:10.1115/1.1933931.
  • Bell ED, Kunjir RS, Monson KL. Biaxial and failure properties of passive rat middle cerebral arteries. Journal of Biomechanics 2013:91–6. doi:10.1016/j.jbiomech.2012.10.015.
  • Horta Muñoz S, Serna Moreno MC. Advances in Cruciform Biaxial Testing of Fibre-Reinforced Polymers. Polymers 2022;14(4):686. doi:10.3390/polym14040686.
  • Ayyalasomayajula V, Skallerud B. Microstructure and mechanics of the bovine trachea: Layer-specific investigations through SHG imaging and biaxial testing. Journal of the Mechanical Behavior of Biomedical Materials 2022;18. doi:10.1016/j.jmbbm.2022.105371.
  • Sacks MS. A method for planar biaxial mechanical testing that includes in-plane shear. J Biomech Eng 1999;121(5):551-5. doi:10.1115/1.2835086.
  • Sacks MS. Biaxial mechanical evaluation of planar biological materials. Journal of Elasticity and the Physical Science of Solids 2000;199. doi:10.1023/A:1010917028671.
  • Fung YC. Biomechanics: Mechanical Properties of Living Tissues. Springer Science & Business Media; 1993.
  • Yang G. Strain Gauges for Biological Tissues (Doctoral dissertation). University of California, Irvine; 2008.
  • Schrininova S. Yumuşak dokunun biyomekanik karakterizasyonu için iki eksenli çekme-basma test cihazının geliştirilmesi. Yüksek Lisans Tezi. Ege Üniversitesi, Fen Bilimleri Enstitüsü; 2024.
  • Ozan F, Okur KT, Mavi F, Pekedis M. Biomechanical and clinical assessment of dissociation in bipolar hip hemiarthroplasty. Bio-Medical Materials and Engineering 2025;36(3):185-99. doi:10.1177/09592989241306688.
  • Pekedis M, Karaarslan AA, Ozan F, Tahta M, Kayali C. Novel anchor-type proximal femoral nail for the improvement of bone-fixation integrity in treating intertrochanteric fractures: an experimental and computational characterization study. Computer Methods in Biomechanics and Biomedical Engineering 2025:1-17. doi:10.1080/10255842.2025.2456985.
  • Destrade M, Dorfmann L, Saccomandi G. The Ogden model of rubber mechanics: 50 years of impact on nonlinear elasticity. Philos Trans A Math Phys Eng Sci 2022;380(2234):20210332. doi:10.1098/rsta.2021.0332.
  • Barroso A, Correa E, Freire J, et al. A device for biaxial testing in uniaxial machines: design, manufacturing and experimental results using cruciform specimens of composite materials. Exp Mech 2018;58:49–53. doi:10.1007/s11340-017-0327-6.
  • Gupta V, Gupta S, Chanda A. Development of an ultra-low-cost planar biaxial tester for soft tissue characterization. Biomed Phys Eng Express 2023;9(2). doi:10.1088/2057-1976/acb940.
  • Samuel SST, Buckley CP, Zavatsky AB. Transverse Compression of Tendons. ASME J Biomech Eng 2016;138(4). doi:10.1115/1.4032627.
  • Pekedis M, Ozan F, Melez M. Location-dependent biomechanical characterization of the human achilles tendon in diabetic and nondiabetic patients. ASME J Biomech Eng 2025;147(5):051004. doi:10.1115/1.4068015.
  • Khayyeri H, Gustafsson A, Heuijerjans A, Matikainen MK, Julkunen P, Eliasson P, et al. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon. PLoS One 2015;10(6). doi:10.1371/journal.pone.0126869.
  • Pekedis M. In-vitro measurements coupled with in-silico simulations for stochastic calibration and uncertainty quantification of the mechanical response of biological materials. arXiv 2025:1-28. doi:48550/arXiv.2503.09900.

Yumuşak Dokunun Biyomekanik Karakterizasyonu için iki Eksenli Çekme-Basma Test Cihazı

Yıl 2026, Cilt: 28 Sayı: 82, 77 - 82, 27.01.2026
https://doi.org/10.21205/deufmd.2026288210

Öz

Anizotropik malzemelerin iki eksende mekanik davranışlarını tespit etmek için mevcut olan endüstriyel çift eksenli makineler oldukça maliyetlidir. Bu çalışmada, evrensel çekme-basma cihazlarıyla uyumlu çalışabilecek basit, ekonomik ve pratik iki eksenli çekme-basma cihazı geliştirilmiştir. Cihaz anizotropik ve doğrusal olmayan davranış sergileyen Aşil tendonu üzerinde test edilmiştir. Cihaz yük taşıyıcı elemanlar, hareketi sağlayan doğrusal ray ve arabalar, numune tutucu çeneler, birim şekil değiştirme rozetleri ve veri alım ünitesinden oluşmaktadır. Öncelikle kasaptan temin edilen dana Aşil tendonlarından, bir yönü fibere paralel, diğer yönü ise fibere dik doğrultuda olacak şekilde “artı (+)” şeklinde örnekler çıkarılmış ve örnekler geliştirilen cihazla test edilmiştir. Elde edilen ölçümler filtrelemeye tabi tutulmuştur. Daha sonra bu ölçümler Ogden malzeme modelinde değerlendirilmiş ve eğri uydurma teknikleriyle numuneye ilişkin parametreler belirlenmiştir. Bu çalışmada geliştirilen portatif ve ekonomik cihaz ile beraberinde uygulanan metodolojik yaklaşım, anizotropik yumuşak doku biyomekaniği alanına önemli katkılar sağlama potansiyeline sahiptir.

Etik Beyan

Hazırlanan makalede etik kurul izni alınmasına gerek yoktur.

Destekleyen Kurum

Bu çalışma herhangi bir kurum tarafından desteklenmemiştir.

Kaynakça

  • Humphrey JD. Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society of London Series A 2003:3–46. doi:10.1098/rspa.2002.1060.
  • Pereira AB, Fernandes FAO, de Morais AB, Maio. Biaxial Testing Machine: Development and Evaluation. Machines 2023;16. doi:10.3390/machines8030040.
  • Corti A, Shameen T, Sharma S, De Paolis A, Cardoso L. Biaxial testing system for characterization of mechanical and rupture properties of small samples. Open Hardware Journal 2022;20. doi:10.1016/j.ohx.2022.e00333.
  • Shiwarskia DJ, Tashman JW, Eaton AF, Apodaca G, Feinberg AW. 3D printed biaxial stretcher compatible with live fluorescence microscopy. Zenodo 2020;23. doi:10.5281/zenodo.3483849.
  • Sacks MS, Sun W. Multiaxial Mechanical Behavior of Biological Tissues. Annual Review of Biomedical Engineering 2003;5:251-84. doi:10.1146/annurev.bioeng.5.011303.120714.
  • Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity and the Physical Science of Solids 2000:1–3. doi:10.1023/A:1010835316564.
  • Lanir Y, Fung YC. Two-dimensional mechanical properties of rabbit skin—I. Journal of Biomechanics 1974:29–34. doi:10.1016/0021-9290(74)90067-0.
  • Sun W, Sacks MS, Scott MJ. Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues. ASME J Biomech Eng 2005;127(4):709–15. doi:10.1115/1.1933931.
  • Bell ED, Kunjir RS, Monson KL. Biaxial and failure properties of passive rat middle cerebral arteries. Journal of Biomechanics 2013:91–6. doi:10.1016/j.jbiomech.2012.10.015.
  • Horta Muñoz S, Serna Moreno MC. Advances in Cruciform Biaxial Testing of Fibre-Reinforced Polymers. Polymers 2022;14(4):686. doi:10.3390/polym14040686.
  • Ayyalasomayajula V, Skallerud B. Microstructure and mechanics of the bovine trachea: Layer-specific investigations through SHG imaging and biaxial testing. Journal of the Mechanical Behavior of Biomedical Materials 2022;18. doi:10.1016/j.jmbbm.2022.105371.
  • Sacks MS. A method for planar biaxial mechanical testing that includes in-plane shear. J Biomech Eng 1999;121(5):551-5. doi:10.1115/1.2835086.
  • Sacks MS. Biaxial mechanical evaluation of planar biological materials. Journal of Elasticity and the Physical Science of Solids 2000;199. doi:10.1023/A:1010917028671.
  • Fung YC. Biomechanics: Mechanical Properties of Living Tissues. Springer Science & Business Media; 1993.
  • Yang G. Strain Gauges for Biological Tissues (Doctoral dissertation). University of California, Irvine; 2008.
  • Schrininova S. Yumuşak dokunun biyomekanik karakterizasyonu için iki eksenli çekme-basma test cihazının geliştirilmesi. Yüksek Lisans Tezi. Ege Üniversitesi, Fen Bilimleri Enstitüsü; 2024.
  • Ozan F, Okur KT, Mavi F, Pekedis M. Biomechanical and clinical assessment of dissociation in bipolar hip hemiarthroplasty. Bio-Medical Materials and Engineering 2025;36(3):185-99. doi:10.1177/09592989241306688.
  • Pekedis M, Karaarslan AA, Ozan F, Tahta M, Kayali C. Novel anchor-type proximal femoral nail for the improvement of bone-fixation integrity in treating intertrochanteric fractures: an experimental and computational characterization study. Computer Methods in Biomechanics and Biomedical Engineering 2025:1-17. doi:10.1080/10255842.2025.2456985.
  • Destrade M, Dorfmann L, Saccomandi G. The Ogden model of rubber mechanics: 50 years of impact on nonlinear elasticity. Philos Trans A Math Phys Eng Sci 2022;380(2234):20210332. doi:10.1098/rsta.2021.0332.
  • Barroso A, Correa E, Freire J, et al. A device for biaxial testing in uniaxial machines: design, manufacturing and experimental results using cruciform specimens of composite materials. Exp Mech 2018;58:49–53. doi:10.1007/s11340-017-0327-6.
  • Gupta V, Gupta S, Chanda A. Development of an ultra-low-cost planar biaxial tester for soft tissue characterization. Biomed Phys Eng Express 2023;9(2). doi:10.1088/2057-1976/acb940.
  • Samuel SST, Buckley CP, Zavatsky AB. Transverse Compression of Tendons. ASME J Biomech Eng 2016;138(4). doi:10.1115/1.4032627.
  • Pekedis M, Ozan F, Melez M. Location-dependent biomechanical characterization of the human achilles tendon in diabetic and nondiabetic patients. ASME J Biomech Eng 2025;147(5):051004. doi:10.1115/1.4068015.
  • Khayyeri H, Gustafsson A, Heuijerjans A, Matikainen MK, Julkunen P, Eliasson P, et al. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon. PLoS One 2015;10(6). doi:10.1371/journal.pone.0126869.
  • Pekedis M. In-vitro measurements coupled with in-silico simulations for stochastic calibration and uncertainty quantification of the mechanical response of biological materials. arXiv 2025:1-28. doi:48550/arXiv.2503.09900.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyomekanik, Katı Mekanik
Bölüm Araştırma Makalesi
Yazarlar

Schirin Schirinova 0009-0007-6559-016X

Saran Sapmaz 0000-0002-9337-3660

Devrim Tümer 0000-0003-2806-7648

Coşkun Harmanşah 0000-0003-4946-8344

Mahmut Pekedis 0000-0002-3350-0277

Gönderilme Tarihi 6 Şubat 2025
Kabul Tarihi 8 Haziran 2025
Yayımlanma Tarihi 27 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 28 Sayı: 82

Kaynak Göster

Vancouver Schirinova S, Sapmaz S, Tümer D, Harmanşah C, Pekedis M. Yumuşak Dokunun Biyomekanik Karakterizasyonu için iki Eksenli Çekme-Basma Test Cihazı. DEUFMD. 2026;28(82):77-82.

Bu dergi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) altında lisanslanmıştır.

download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjliNTAvMDBjMi8xZmIxLzY5MjZmZDIyOGE1NzgyLjA3MzU5MTk2LnBuZyIsImV4cCI6MTc2NDE2OTE1Nywibm9uY2UiOiJhZDRmNjNlNzdhOWYwOWQ4YTNjNGVmNGIxOTFlZWViNyJ9.4Dxgc9mc-p4Tyti8NTU5pxEfGUWeuJud1fPWxu2mUy8