Araştırma Makalesi
BibTex RIS Kaynak Göster

keV X-ışınları Kullanılarak Platin Nanopartiküllerin Doz Artırma Oranının Nicel Değerlendirmesi: Bir Monte Carlo Simülasyon Çalışması

Yıl 2026, Cilt: 28 Sayı: 82, 92 - 95, 27.01.2026
https://doi.org/10.21205/deufmd.2026288212

Öz

Düşük enerjili X-ışınları, sağlıklı dokulara en az zarar vererek yüzeysel lezyonları hedeflemedeki etkinlikleri nedeniyle cilt kanserleri ve dermatolojik bozuklukların tedavisinde yaygın olarak kullanılmaktadır. Radyoterapide nanopartiküllerin kullanılması, serbest radikal üretimini ve ikincil elektron üretimini artırarak doz iletimini geliştirmesi açısından dikkat çekmiştir. Bu çalışmada, 6 mg/g ve 18 mg/g konsantrasyonlarındaki platin nanopartiküller, çeşitli keV enerji seviyelerinde doz artırma oranını (DER) değerlendirmek için yumuşak doku fantomuna dahil edilmiştir. Monte Carlo simülasyonları, düşük enerjili elektron etkileşimlerinin yüksek doğrulukta modellenmesi için iz yapısı (TS) algoritmasını kullanan TOPAS arayüzlü Geant4-DNA kodu kullanılarak gerçekleştirilmiştir. Sonuçlar, daha yüksek NP konsantrasyonları ve daha düşük foton enerjileri ile DER'de belirgin bir artış olduğunu göstermiştir. En yüksek DER (2,66703) 18 mg/g platin konsantrasyonunda 80 keV X-ışınları ile elde edilirken, en düşük DER (1,01222) 6 mg/g konsantrasyonunda 550 keV X-ışınları ile gözlenmiştir. Bulgular, platin nanopartiküllerin, özellikle fotoelektrik etkinin baskın olduğu düşük enerji seviyelerinde, ortamda absorbe edilen dozu önemli ölçüde artırdığını göstermektedir. Bu çalışma, platin nanopartiküllerin düşük enerjili X ışınlarıyla birlikte kullanılmasının yüzey tümör tedavilerinin etkinliğini artırabileceğini göstermektedir. Farklı nanoparçacık türleri, konsantrasyonları ve radyasyon enerjileriyle yapılacak daha ileri çalışmalar, tedavi stratejilerini iyileştirmek ve daha iyi sonuçlar elde etmek için önerilmektedir.

Kaynakça

  • Chow JCL, Jubran S. Depth Dose Enhancement in Orthovoltage Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Study. Micromachines 2023;14:1230.
  • Rong Y, Zuo L, Shang L, Bazan JG. Radiotherapy treatment for nonmelanoma skin cancer. Expert Rev Anticancer Ther 2015;15:765–76.
  • Veness M, Richards S. Role of modern radiotherapy in treating skin cancer. Australas J Dermatol 2003;44:159–68.
  • Krema H, Herrmann E, Albert-Green A, Payne D, Laperriere N, Chung C. Orthovoltage radiotherapy in the management of medial canthal basal cell carcinoma. Br J Ophthalmol 2013;97:730–4.
  • Ogawa R, Yoshitatsu S, Yoshida K, Miyashita T. Is radiation therapy for keloids acceptable? The risk of radiation-induced carcinogenesis. Plast Reconstr Surg 2009;124:1196–201.
  • Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 2010;21:085103.
  • Verkhovtsev AV, Korol AV, Solov’yov AV. Electron production by sensitizing gold nanoparticles irradiated by fast ions. J Phys Chem C 2015;119(20):11000–13.
  • Khoshgard K, Hashemi B, Arbabi A, Rasaee MJ, Soleimani M. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques. Phys Med Biol 2014;59:2249.
  • Zheng XJ, Chow JC. Radiation dose enhancement in skin therapy with nanoparticle addition: A Monte Carlo study on kilovoltage photon and megavoltage electron beams. World J Radiol 2017;9:63.
  • Guidelli EJ, Baffa O. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach. Med Phys 2014;41:032101.
  • Khoo AM, Cho SH, Reynoso FJ, Aliru M, Aziz K, Bodd M, et al. Radiosensitization of prostate cancers in vitro and in vivo to erbium-filtered orthovoltage x-rays using actively targeted gold nanoparticles. Sci Rep 2017;7:18044.
  • Kakade NR, Sharma SD. Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. J Cancer Res Ther 2015;11:94-7.
  • Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Phys Med Biol 2005;50:N163‑73.
  • Moradi F, Rezaee Enrahim Saraee Kh, Abdul Sani SF, Bradley DA. Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiation Physics and Chemistry 2021;180:109294.
  • Haume K, Rosa S, Grellet S, Smialek MA, Butterworth KT, Solov’yov AV, et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nano 2016;7:8.
  • Butterworth KT, McMahon SJ, Taggart LE, Prise KM. Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl Cancer Res 2013;2(4):269–79.
  • Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 2009;5:136–42.
  • Zein R, Sharrouf W, Selting K. Physical properties of nanoparticles that result in improved cancer targeting. J Oncol 2020:5194780.
  • Gray T, Bassiri N, David S, Patel DY, Stathakis S, Kirby N, et al. A detailed experimental and Monte Carlo analysis of gold nanoparticle dose enhancement using 6 MV and 18 MV external beam energies in a macroscopic scale. Appl Radiat Isot 2021;171:109638.
  • Khodaei A, Moradi F, Oresegum A, Zubair HT, Bradley DA, Ibrahim AS, et al. Evaluation of TOPAS MC tool performance in optical photon transport and radioluminescence-based dosimetry. Biomed Phys Eng Express 2024;10:055034.
  • Rogers DW. Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 2006;51:R287.
  • Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S, et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med Phys 2018;45(8):722-39.
  • Emfietzoglou D, Nikjoo H. The Effect of Model Approximations on Single-Collision Distributions of Low-Energy Electrons in Liquid Water. Radiat Res 2005;163(1):98–111.
  • Moradi F, Jalili M, Rezaee Enrahim Saraee Kh, Khandaker MU, Bradley DA. Geant4 track structure simulation of electron beam interaction with a gold nanoparticle. Radiation Physics and Chemistry 2022;200:110278.
  • Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 2008;60:977–85.
  • International Commission on Radiation Units and Measurements (ICRU). Tissue Substitutes in Radiation Units and Measurement, ICRU Report No. 44. Bethesda, USA; 1989.
  • Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat 2007;6:395–401.
  • Gebremariam T, Geraily G, Longo F, Gholami S. Radiation dose escalation by injecting bismuth, gold and platinum nanoparticles into a tumour during high dose rate 192Ir brachytherapy: a Monte Carlo study. Radiation and Environmental Biophysics 2025;64:303–10.
  • Muhammad Afiq KA, Ab Rashid R, Mat Lazim R, Dollah N, Abdul Razak K, Rahman WN. Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV photon beam radiotherapy. Radiation Physics and Chemistry 2018;150:40-5.

Quantitative Assessment of Dose Enhancement Ratio of Platinum Nanoparticles Using keV X-rays: A Monte Carlo Simulation Study

Yıl 2026, Cilt: 28 Sayı: 82, 92 - 95, 27.01.2026
https://doi.org/10.21205/deufmd.2026288212

Öz

Low-energy X-rays are widely used in treating skin cancers and dermatological disorders due to their effectiveness in targeting superficial lesions with minimal damage to healthy tissues. The introduction of nanoparticles in radiotherapy has gained attention for enhancing dose delivery through increased free radical production and secondary electron generation. In this study, platinum nanoparticles at concentrations of 6 mg/g and 18 mg/g were incorporated into a soft tissue phantom to evaluate the dose enhancement ratio (DER) at various keV energy levels. Monte Carlo simulations were conducted using the Geant4-DNA code with the TOPAS interface, employing the track structure (TS) algorithm for high-accuracy modeling of low-energy electron interactions. Results showed a clear increase in DER with higher NP concentrations and lower photon energies. The highest DER (2.66703) was obtained with 80 keV X-rays at 18 mg/g platinum concentration, while the lowest DER (1.01222) was observed with 550 keV X-rays at 6 mg/g concentration. The findings indicate that platinum nanoparticles significantly enhance the absorbed dose in the medium, particularly at low energy levels where the photoelectric effect is dominant. This study suggests that using platinum nanoparticles with low-energy X-rays may improve the efficacy of surface tumor treatments. Further studies with different nanoparticle types, concentrations, and radiation energies are recommended to improve treatment strategies and enhance therapeutic outcomes.

Kaynakça

  • Chow JCL, Jubran S. Depth Dose Enhancement in Orthovoltage Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Study. Micromachines 2023;14:1230.
  • Rong Y, Zuo L, Shang L, Bazan JG. Radiotherapy treatment for nonmelanoma skin cancer. Expert Rev Anticancer Ther 2015;15:765–76.
  • Veness M, Richards S. Role of modern radiotherapy in treating skin cancer. Australas J Dermatol 2003;44:159–68.
  • Krema H, Herrmann E, Albert-Green A, Payne D, Laperriere N, Chung C. Orthovoltage radiotherapy in the management of medial canthal basal cell carcinoma. Br J Ophthalmol 2013;97:730–4.
  • Ogawa R, Yoshitatsu S, Yoshida K, Miyashita T. Is radiation therapy for keloids acceptable? The risk of radiation-induced carcinogenesis. Plast Reconstr Surg 2009;124:1196–201.
  • Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 2010;21:085103.
  • Verkhovtsev AV, Korol AV, Solov’yov AV. Electron production by sensitizing gold nanoparticles irradiated by fast ions. J Phys Chem C 2015;119(20):11000–13.
  • Khoshgard K, Hashemi B, Arbabi A, Rasaee MJ, Soleimani M. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques. Phys Med Biol 2014;59:2249.
  • Zheng XJ, Chow JC. Radiation dose enhancement in skin therapy with nanoparticle addition: A Monte Carlo study on kilovoltage photon and megavoltage electron beams. World J Radiol 2017;9:63.
  • Guidelli EJ, Baffa O. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach. Med Phys 2014;41:032101.
  • Khoo AM, Cho SH, Reynoso FJ, Aliru M, Aziz K, Bodd M, et al. Radiosensitization of prostate cancers in vitro and in vivo to erbium-filtered orthovoltage x-rays using actively targeted gold nanoparticles. Sci Rep 2017;7:18044.
  • Kakade NR, Sharma SD. Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. J Cancer Res Ther 2015;11:94-7.
  • Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Phys Med Biol 2005;50:N163‑73.
  • Moradi F, Rezaee Enrahim Saraee Kh, Abdul Sani SF, Bradley DA. Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiation Physics and Chemistry 2021;180:109294.
  • Haume K, Rosa S, Grellet S, Smialek MA, Butterworth KT, Solov’yov AV, et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nano 2016;7:8.
  • Butterworth KT, McMahon SJ, Taggart LE, Prise KM. Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl Cancer Res 2013;2(4):269–79.
  • Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 2009;5:136–42.
  • Zein R, Sharrouf W, Selting K. Physical properties of nanoparticles that result in improved cancer targeting. J Oncol 2020:5194780.
  • Gray T, Bassiri N, David S, Patel DY, Stathakis S, Kirby N, et al. A detailed experimental and Monte Carlo analysis of gold nanoparticle dose enhancement using 6 MV and 18 MV external beam energies in a macroscopic scale. Appl Radiat Isot 2021;171:109638.
  • Khodaei A, Moradi F, Oresegum A, Zubair HT, Bradley DA, Ibrahim AS, et al. Evaluation of TOPAS MC tool performance in optical photon transport and radioluminescence-based dosimetry. Biomed Phys Eng Express 2024;10:055034.
  • Rogers DW. Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 2006;51:R287.
  • Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S, et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med Phys 2018;45(8):722-39.
  • Emfietzoglou D, Nikjoo H. The Effect of Model Approximations on Single-Collision Distributions of Low-Energy Electrons in Liquid Water. Radiat Res 2005;163(1):98–111.
  • Moradi F, Jalili M, Rezaee Enrahim Saraee Kh, Khandaker MU, Bradley DA. Geant4 track structure simulation of electron beam interaction with a gold nanoparticle. Radiation Physics and Chemistry 2022;200:110278.
  • Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 2008;60:977–85.
  • International Commission on Radiation Units and Measurements (ICRU). Tissue Substitutes in Radiation Units and Measurement, ICRU Report No. 44. Bethesda, USA; 1989.
  • Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat 2007;6:395–401.
  • Gebremariam T, Geraily G, Longo F, Gholami S. Radiation dose escalation by injecting bismuth, gold and platinum nanoparticles into a tumour during high dose rate 192Ir brachytherapy: a Monte Carlo study. Radiation and Environmental Biophysics 2025;64:303–10.
  • Muhammad Afiq KA, Ab Rashid R, Mat Lazim R, Dollah N, Abdul Razak K, Rahman WN. Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV photon beam radiotherapy. Radiation Physics and Chemistry 2018;150:40-5.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nanomalzemeler
Bölüm Araştırma Makalesi
Yazarlar

Taylan Tuğrul 0000-0002-0557-1334

Gönderilme Tarihi 4 Mart 2025
Kabul Tarihi 14 Haziran 2025
Yayımlanma Tarihi 27 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 28 Sayı: 82

Kaynak Göster

Vancouver Tuğrul T. Quantitative Assessment of Dose Enhancement Ratio of Platinum Nanoparticles Using keV X-rays: A Monte Carlo Simulation Study. DEUFMD. 2026;28(82):92-5.

Bu dergi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) altında lisanslanmıştır.

download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjliNTAvMDBjMi8xZmIxLzY5MjZmZDIyOGE1NzgyLjA3MzU5MTk2LnBuZyIsImV4cCI6MTc2NDE2OTE1Nywibm9uY2UiOiJhZDRmNjNlNzdhOWYwOWQ4YTNjNGVmNGIxOTFlZWViNyJ9.4Dxgc9mc-p4Tyti8NTU5pxEfGUWeuJud1fPWxu2mUy8