Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyoetanol Üretiminde Ön İşlem Yöntemlerinin Karşılaştırmalı Yaşam Döngüsü Analizi

Yıl 2026, Cilt: 28 Sayı: 82, 106 - 112, 27.01.2026
https://doi.org/10.21205/deufmd.2026288214

Öz

Küresel enerji talebinin sürekli artışı ve yeni enerji kaynaklarına duyulan ihtiyaç, yenilenebilir enerji kaynaklarına olan ilgiyi arttırmıştır. Sürdürülebilir kalkınma hedefleri ve döngüsel ekonomi bağlamında, atıklardan biyoyakıt üretimi umut verici bir teknolojidir. Bu bağlamda, biyoetanol en yaygın kullanılan biyoyakıt olarak kabul edilmektedir. Maya ve bakteri fermentasyonu yoluyla meyve ve sebze atıklarından (MSA) biyoyakıt üretimi yenilikçi ve sürdürülebilir bir tekniktir. Yaşam döngüsü değerlendirmesi, ürünlerin ve süreçlerin çevresel etkisini anlamak için küresel ısınma potansiyeli, ötrofikasyon, asidifikasyon, ozon tükenmesi gibi etki faktörlerini dikkate alarak kullanılan bir tekniktir. Bu çalışma, meyve ve sebze atıklarından biyoyakıt üretimi için yaşam döngüsü değerlendirme metodolojisi kullanarak dört ön işlem prosedürünün (asit, ısı, asit/ısı ve mikrodalga) çevresel etkisini incelemektedir. Analiz, en düşük çevresel etkiye sahip ön işlem yaklaşımının mikrodalga yöntemi olduğunu, bu yöntemin küresel ısınma potansiyelinin 3,9 kg CO2 eşdeğer/g etanol olduğunu, asit ve ısı işleminin etkisinin 8,7 kg CO2 eşdeğer/g etanol, asit ön işleminin 11,1 kg CO2 eşdeğer/g etanol ve ısı işleminin 5,1 kg CO2 eşdeğer/g etanol olduğunu göstermiştir. Benzer sonuçlar, kara asitleşmesi, ozon tükenmesi ve tatlı su ötrofikasyonu açısından da gözlenmiştir.

Kaynakça

  • Singh A, Singhania RR, Soam S, Chen CW, Haldar D, Varjani S, Patel AK. Production of Bioethanol From Food Waste: Status and Perspectives. Bioresource Technology 2022;360:127651. doi:10.1016/j.biortech.2022.127651.
  • Bender LE, Lopes ST, Gomes KS, Devos RJB, Colla LM. Challenges in Bioethanol Production from Food Residues. Bioresource Technology Reports 2022;19:101171. doi:10.1016/j.biteb.2022.101171.
  • Panahi HKS, Dehhaghi M, Guillemin GJ, Gupta VK, Lam SS, Aghbashlo M, Tabatabaei M. Bioethanol Production from Food Wastes Rich in Carbohydrates. Current Opinion in Food Science 2022;43:71-81. doi:10.1016/j.cofs.2021.11.001.
  • Aldama DD, Grassauer F, Zhu Y, Ardestani-Jaafari A, Pelletier N. Allocation Methods in Life Cycle Assessments (LCAs) of Agri-Food Co-Products and Food Waste Valorization Systems: Systematic Review and Recommendations. Journal of Cleaner Production 2023;421:138488. doi:10.1016/j.jclepro.2023.138488.
  • Al Qadar S, Budihardjo MA, Priyambada IB. Life Cycle Assessment to Compare the Environmental of Food Waste Management System in Semarang City. Jurnal Presipitasi 2024;21(1):154-64. doi:10.14710/presipitasi.v21i1.154-164.
  • Konti A, Kekos D, Mamma D. Life Cycle Analysis of the Bioethanol Production from Food Waste—A Review. Energies 2020;13(19):5206. doi:10.3390/en13195206.
  • del Campo I, Alegría I, Zazpe M, Echeverría M, Echeverría I. Diluted Acid Hydrolysis Pretreatment of Agri-Food Wastes for Bioethanol Production. Industrial Crops and Products 2006;24(3):214-21. doi:10.1016/j.indcrop.2006.06.014.
  • Saratale GD, Oh MK. Improving Alkaline Pretreatment Method for Preparation of Whole Rice Waste Biomass Feedstock and Bioethanol Production. RSC Advances 2015;5(118):97171-9. doi:10.1039/C5RA17797A.
  • Sondhi S, Kaur PS, Kaur M. Techno-Economic Analysis of Bioethanol Production from Microwave Pretreated Kitchen Waste. SN Applied Sciences 2020;2(9):1558. doi:10.1007/s42452-020-03362-1.
  • Estrada-Martínez R, Favela-Torres E, Soto-Cruz NO, Escalona-Buendía HB, Saucedo-Castañeda G. A Mild Thermal Pre-Treatment of The Organic Fraction of Municipal Wastes Allows High Ethanol Production by Direct Solid-State Fermentation. Biotechnology and Bioprocess Engineering 2019;24:401-12. doi:10.1007/s12257-019-0032-7.
  • Roukas T, Kotzekidou P. From Food Industry Wastes to Second Generation Bioethanol: A Review. Reviews in Environmental Science and Bio/Technology 2022;21(1):299-329. doi:10.1007/s11157-021-09606-9.
  • Battista F, Mancini G, Ruggeri B, Fino D. Selection of The Best Pretreatment for Hydrogen and Bioethanol Production from Olive Oil Waste Products. Renewable Energy 2016;88:401-7. doi:10.1016/j.renene.2015.11.055.
  • Melikoglu M, Turkmen B. Food Waste to Energy: Forecasting Turkey’s Bioethanol Generation Potential from Wasted Crops and Cereals Till 2030. Sustainable Energy Technologies and Assessments 2019;36:100553. doi:10.1016/j.seta.2019.100553.
  • ISO. ISO 14040:2006 – Environmental management — Life cycle assessment — Principles and framework. Geneva, Switzerland: International Organization for Standardization; 2006.
  • Patel K, Singh SK. Sustainable Waste Management: A Comprehensive Life Cycle Assessment of Bioethanol Production From Agricultural and Municipal Waste. Environmental Science and Pollution Research 2024;31(39):51431-46. doi:10.1007/s11356-024-34612-z.
  • Angili T, Grzesik K, Rödl A, Kaltschmitt M. Life Cycle Assessment of Bioethanol Production: a Review of Feedstock, Technology and Methodology. Energies 2021;14(10):2939. doi:10.3390/en14102939.
  • Elginöz N, Khatami K, Owusu-Agyeman I, Çetecioğlu Z. Life Cycle Assessment of an Innovative Food Waste Management System. Frontiers in Sustainable Food Systems 2020;4:1-9. doi:10.3389/fsufs.2020-00023.
  • Morales-Vera R, Vasques-Ibarra L, Scott F, Puettmann M, Gustafson R. Life Cycle Assessment of Bioethanol Production: A Case Study from Poplar Biomass Growth in the US Pacific Northwest. Fermentation 2022;8(12):734. doi:10.3390/fermentation8120734.
  • Yin T, Huhe T, Li X, Wang Q, Lei T, Zhou Z. Research on Life Cycle Assessment and Performance Comparison of Bioethanol Production from Various Biomass Feedstocks. Sustainability 2024;16(5):1788. doi:10.3390/su16051788.
  • Keskin-Gundogdu T. Comparison of Conventional and Novel Pre-Treatment Methods for Bioethanol Production from Fruit and Vegetable Wastes. Chemical and Biochemical Engineering Quarterly 2019;33(4):471-83. doi:10.15255/CABEQ.2019.1738.
  • David AJ, Abinandan S, Vaidyanathan VK, Xu CC, Krishnamurthi T. A Critical Review on Current Status and Environmental Sustainability of Pre-Treatment Methods for Bioethanol Production from Lignocellulose Feedstocks. 3 Biotech 2023;13(7):233. doi:10.1007/s13205-023-03657-1.
  • Shakelly N, Pérez-Cardona JR, Deng S, Maani T, Li Z, Sutherland JW. Comparative Life Cycle Assessment of Bioethanol Production from Different Generations of Biomass and Waste Feedstocks. Procedia CIRP 2023;116:630-5. doi:10.1016/j.procir.2023.02.106.
  • Shadbahr J, Zhang Y, Khan F. Life Cycle Assessment of Bioethanol Production from Woodchips with Modifications in the Pretreatment Process. Applied Biochemistry and Biotechnology 2015;175:1080-91. doi:10.1007/s12010-014-1293-4.
  • Long F, Liu H. An Integration of Machine Learning Models and Life Cycle Assessment for Lignocellulosic Bioethanol Platforms. Energy Conversion and Management 2023;292:117379. doi:10.1016/j.enconman.2023.117379.
  • Fagundes VD, Machado ÊL, de Cássia de Souza Schneider R, Colla LM. Life Cycle Assessment of Bioethanol Production from Banana, Potato, and Papaya Waste. The International Journal of Life Cycle Assessment 2024;29(10):1846-62. doi:10.1007/s11367-024-02342-6.
  • Ebner J, Babbitt C, Winer M, Hilton B, Williamson A. Life Cycle Greenhouse Gas (GHG) Impacts of a Novel Process for Converting Food Waste to Ethanol and Co-Products. Applied Energy 2014;130:86–93. doi:10.1016/j.apenergy.2014.04.099.
  • Narisetty V, Nagarajan S, Gadkari S, Ranade VV, Zhang J, Patchigolla K, Kumar V. Process Optimization for Recycling of Bread Waste into Bioethanol and Biomethane: A Circular Economy Approach. Energy Conversion and Management 2022;266:115784. doi:10.1016/j.enconman.2022.115784.
  • Pourbafrani M, McKechnie J, MacLean HL, Saville BA. Life Cycle Greenhouse Gas Impacts of Ethanol, Biomethane and Limonene Production from Citrus Waste. Environmental Research Letters 2013;8(1):015007. doi:10.1088/1748-9326/8/1/015007.

Comparative Life Cycle Analysis of Pre-Treatment Methods in Bioethanol Production from Fruit and Vegetable Wastes

Yıl 2026, Cilt: 28 Sayı: 82, 106 - 112, 27.01.2026
https://doi.org/10.21205/deufmd.2026288214

Öz

The continuous increase in global energy demand and the need for new energy resources make it imperative to find new energy sources. In the context of sustainable development goals and the circular economy, bioenergy production from waste is a promising technology. In this context, bioethanol is known as the most widely used biofuel. It is an innovative and sustainable technique for bioethanol production from fruit and vegetable wastes (FVWs) through yeast and bacteria fermentation. Life cycle assessment is a technique for understanding the environmental effect of products and processes by considering impact factors such as global warming potential, eutrophication, acidification, ozone depletion, etc. This study examines the environmental impact of 4 pre-treatment procedures (acid, heat, acid/heat, and microwave) for producing bioethanol from fruit and vegetable waste using life cycle assessment methodology. The analysis indicated that the pre-treatment approach with the lowest environmental impact is the microwave method, with a Global Warming Potential 3.9 kg CO2 eq/g ethanol while the effect of acid and heat treatment is 8.7 kg CO2 eq/g ethanol, acid pretreatment is 11.1 kg CO2 eq/g ethanol, and heat treatment is 5.1 kg CO2 eq/g ethanol. Similar results were observed in terms of terrestrial acidification, ozone depletion and freshwater eutrophication

Teşekkür

Acknowledgment During the preparation of this manuscript, the authors used Quillbot Premium for the purposes of language editing and text fluency. The authors have reviewed, edited the output and take full responsibility for the content of this publication. Author Contribution Statement All authors contribute to the paper equally and they have accepted responsibility for the entire content of this manuscript and approved its submission.

Kaynakça

  • Singh A, Singhania RR, Soam S, Chen CW, Haldar D, Varjani S, Patel AK. Production of Bioethanol From Food Waste: Status and Perspectives. Bioresource Technology 2022;360:127651. doi:10.1016/j.biortech.2022.127651.
  • Bender LE, Lopes ST, Gomes KS, Devos RJB, Colla LM. Challenges in Bioethanol Production from Food Residues. Bioresource Technology Reports 2022;19:101171. doi:10.1016/j.biteb.2022.101171.
  • Panahi HKS, Dehhaghi M, Guillemin GJ, Gupta VK, Lam SS, Aghbashlo M, Tabatabaei M. Bioethanol Production from Food Wastes Rich in Carbohydrates. Current Opinion in Food Science 2022;43:71-81. doi:10.1016/j.cofs.2021.11.001.
  • Aldama DD, Grassauer F, Zhu Y, Ardestani-Jaafari A, Pelletier N. Allocation Methods in Life Cycle Assessments (LCAs) of Agri-Food Co-Products and Food Waste Valorization Systems: Systematic Review and Recommendations. Journal of Cleaner Production 2023;421:138488. doi:10.1016/j.jclepro.2023.138488.
  • Al Qadar S, Budihardjo MA, Priyambada IB. Life Cycle Assessment to Compare the Environmental of Food Waste Management System in Semarang City. Jurnal Presipitasi 2024;21(1):154-64. doi:10.14710/presipitasi.v21i1.154-164.
  • Konti A, Kekos D, Mamma D. Life Cycle Analysis of the Bioethanol Production from Food Waste—A Review. Energies 2020;13(19):5206. doi:10.3390/en13195206.
  • del Campo I, Alegría I, Zazpe M, Echeverría M, Echeverría I. Diluted Acid Hydrolysis Pretreatment of Agri-Food Wastes for Bioethanol Production. Industrial Crops and Products 2006;24(3):214-21. doi:10.1016/j.indcrop.2006.06.014.
  • Saratale GD, Oh MK. Improving Alkaline Pretreatment Method for Preparation of Whole Rice Waste Biomass Feedstock and Bioethanol Production. RSC Advances 2015;5(118):97171-9. doi:10.1039/C5RA17797A.
  • Sondhi S, Kaur PS, Kaur M. Techno-Economic Analysis of Bioethanol Production from Microwave Pretreated Kitchen Waste. SN Applied Sciences 2020;2(9):1558. doi:10.1007/s42452-020-03362-1.
  • Estrada-Martínez R, Favela-Torres E, Soto-Cruz NO, Escalona-Buendía HB, Saucedo-Castañeda G. A Mild Thermal Pre-Treatment of The Organic Fraction of Municipal Wastes Allows High Ethanol Production by Direct Solid-State Fermentation. Biotechnology and Bioprocess Engineering 2019;24:401-12. doi:10.1007/s12257-019-0032-7.
  • Roukas T, Kotzekidou P. From Food Industry Wastes to Second Generation Bioethanol: A Review. Reviews in Environmental Science and Bio/Technology 2022;21(1):299-329. doi:10.1007/s11157-021-09606-9.
  • Battista F, Mancini G, Ruggeri B, Fino D. Selection of The Best Pretreatment for Hydrogen and Bioethanol Production from Olive Oil Waste Products. Renewable Energy 2016;88:401-7. doi:10.1016/j.renene.2015.11.055.
  • Melikoglu M, Turkmen B. Food Waste to Energy: Forecasting Turkey’s Bioethanol Generation Potential from Wasted Crops and Cereals Till 2030. Sustainable Energy Technologies and Assessments 2019;36:100553. doi:10.1016/j.seta.2019.100553.
  • ISO. ISO 14040:2006 – Environmental management — Life cycle assessment — Principles and framework. Geneva, Switzerland: International Organization for Standardization; 2006.
  • Patel K, Singh SK. Sustainable Waste Management: A Comprehensive Life Cycle Assessment of Bioethanol Production From Agricultural and Municipal Waste. Environmental Science and Pollution Research 2024;31(39):51431-46. doi:10.1007/s11356-024-34612-z.
  • Angili T, Grzesik K, Rödl A, Kaltschmitt M. Life Cycle Assessment of Bioethanol Production: a Review of Feedstock, Technology and Methodology. Energies 2021;14(10):2939. doi:10.3390/en14102939.
  • Elginöz N, Khatami K, Owusu-Agyeman I, Çetecioğlu Z. Life Cycle Assessment of an Innovative Food Waste Management System. Frontiers in Sustainable Food Systems 2020;4:1-9. doi:10.3389/fsufs.2020-00023.
  • Morales-Vera R, Vasques-Ibarra L, Scott F, Puettmann M, Gustafson R. Life Cycle Assessment of Bioethanol Production: A Case Study from Poplar Biomass Growth in the US Pacific Northwest. Fermentation 2022;8(12):734. doi:10.3390/fermentation8120734.
  • Yin T, Huhe T, Li X, Wang Q, Lei T, Zhou Z. Research on Life Cycle Assessment and Performance Comparison of Bioethanol Production from Various Biomass Feedstocks. Sustainability 2024;16(5):1788. doi:10.3390/su16051788.
  • Keskin-Gundogdu T. Comparison of Conventional and Novel Pre-Treatment Methods for Bioethanol Production from Fruit and Vegetable Wastes. Chemical and Biochemical Engineering Quarterly 2019;33(4):471-83. doi:10.15255/CABEQ.2019.1738.
  • David AJ, Abinandan S, Vaidyanathan VK, Xu CC, Krishnamurthi T. A Critical Review on Current Status and Environmental Sustainability of Pre-Treatment Methods for Bioethanol Production from Lignocellulose Feedstocks. 3 Biotech 2023;13(7):233. doi:10.1007/s13205-023-03657-1.
  • Shakelly N, Pérez-Cardona JR, Deng S, Maani T, Li Z, Sutherland JW. Comparative Life Cycle Assessment of Bioethanol Production from Different Generations of Biomass and Waste Feedstocks. Procedia CIRP 2023;116:630-5. doi:10.1016/j.procir.2023.02.106.
  • Shadbahr J, Zhang Y, Khan F. Life Cycle Assessment of Bioethanol Production from Woodchips with Modifications in the Pretreatment Process. Applied Biochemistry and Biotechnology 2015;175:1080-91. doi:10.1007/s12010-014-1293-4.
  • Long F, Liu H. An Integration of Machine Learning Models and Life Cycle Assessment for Lignocellulosic Bioethanol Platforms. Energy Conversion and Management 2023;292:117379. doi:10.1016/j.enconman.2023.117379.
  • Fagundes VD, Machado ÊL, de Cássia de Souza Schneider R, Colla LM. Life Cycle Assessment of Bioethanol Production from Banana, Potato, and Papaya Waste. The International Journal of Life Cycle Assessment 2024;29(10):1846-62. doi:10.1007/s11367-024-02342-6.
  • Ebner J, Babbitt C, Winer M, Hilton B, Williamson A. Life Cycle Greenhouse Gas (GHG) Impacts of a Novel Process for Converting Food Waste to Ethanol and Co-Products. Applied Energy 2014;130:86–93. doi:10.1016/j.apenergy.2014.04.099.
  • Narisetty V, Nagarajan S, Gadkari S, Ranade VV, Zhang J, Patchigolla K, Kumar V. Process Optimization for Recycling of Bread Waste into Bioethanol and Biomethane: A Circular Economy Approach. Energy Conversion and Management 2022;266:115784. doi:10.1016/j.enconman.2022.115784.
  • Pourbafrani M, McKechnie J, MacLean HL, Saville BA. Life Cycle Greenhouse Gas Impacts of Ethanol, Biomethane and Limonene Production from Citrus Waste. Environmental Research Letters 2013;8(1):015007. doi:10.1088/1748-9326/8/1/015007.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yaşam Döngüsü Değerlendirmesi ve Endüstriyel Ekoloji, Yenilenebilir Enerji Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Sıdıka Tuğçe Kalkan 0000-0002-8431-0756

Tuğba Keskin Gündoğdu 0000-0001-9354-7774

Gönderilme Tarihi 8 Nisan 2025
Kabul Tarihi 30 Haziran 2025
Yayımlanma Tarihi 27 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 28 Sayı: 82

Kaynak Göster

Vancouver Kalkan ST, Keskin Gündoğdu T. Comparative Life Cycle Analysis of Pre-Treatment Methods in Bioethanol Production from Fruit and Vegetable Wastes. DEUFMD. 2026;28(82):106-12.

Bu dergi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) altında lisanslanmıştır.

download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjliNTAvMDBjMi8xZmIxLzY5MjZmZDIyOGE1NzgyLjA3MzU5MTk2LnBuZyIsImV4cCI6MTc2NDE2OTE1Nywibm9uY2UiOiJhZDRmNjNlNzdhOWYwOWQ4YTNjNGVmNGIxOTFlZWViNyJ9.4Dxgc9mc-p4Tyti8NTU5pxEfGUWeuJud1fPWxu2mUy8