Araştırma Makalesi
BibTex RIS Kaynak Göster

Characterization of Asphalt Binder Containing Microcapsules

Yıl 2021, , 207 - 215, 15.01.2021
https://doi.org/10.21205/deufmd.2021236718

Öz

Asfalt kaplamalar, trafik yükleri, yağmur ve oksidasiyon gibi yol kaplamaları için olumsuz çevresel etkilerine maruz kalarak mekanik özelliklerini kaybetmektedir. Son zamanlardaki araştırmalar uzun ömürlü kaplamaların önemini vurgulamaktadır. Sürdürülebilirlik kapsamında bitümlü sıcak karışımlarının ömrünü korumak ve arttırabilmek amacı, asfalt endüstrisini farklı araştırmalara itmiş ve günümüzde “kendi kendini iyileştiren” (Self Healing) teknikler üzerine yoğunlaştırmıştır.
Bu hedefe ulaşmak için, kendi kendini onaran mikrokapsüller, mikro çatlakları otonom olarak onarmanın ve orijinal mekanik özellikleri geri kazanmanın, daha sonra mikro çatlaklarının büyümesini daha da yavaşlatmanın ve kaplamanın ömrünü uzatmanın etkili yöntemlerden biri olarak görünmektedir.
Bu çalışmada, üre ve formaldehit (UF) karışımı ile kendi kendini iyileştiren mikrokapsüller, in situ polimerizasyon yöntemi ile hazırlanmıştır. Mikro kapsüllerin karakterizasyon araştırılması ve asfalt içinde gösteren iyileşme oranını incelemek amacı ile bitüm içine farklı miktarda mikro kapsül (6, 8, 9 ,10, 11 ve %12) eklenmiştir. Numunelerin reolojik özellikleri Dinamik Kesme Reometresi ile incelenmiştir. Ayrıca mikrokapsül içeren bitüm numunelerinin mekanik özelliklerinin tespiti için çekme testi yapılmıştır.
Üretilen mikro kapsüller uygulamada bitümün termal etkisine dayanabileceğini gösteren yüksek sıcaklıklara dayanabilmektedir. Ayrıca, mikro kapsülleri içeren bitüm numuneleri, kompleks modülü (G *) ve bitümün mekanik özellikleri açısından tatmin edici sonuçlar göstermektedir. Araştırmaya göre İyileşme değeri ilk etapta artıyor ve bu mikrokapsüllerın asfalt malzemesinin mekanik özelliklerini geri kazanma göstergesidir. İyileştirici madde içeren mikro kapsüller, yeni nesil kaplamaları gerçekleştirmek için umut verici bir ürün olacaktır.

Destekleyen Kurum

dokuz eylül üniversitesi inşaat mühendisliği bölümü

Kaynakça

  • [1] Organisation for Economic Cooperation and Development. 2013. Road traffic, vehicles and networks. In: Environment at a glance 2013: OECD indicators. OECD, Paris
  • [2] European Union Road Federation. 2012. European road statistics 2012. European Union Road Federation (ERF), Brussels.
  • [3] Qiu, J., Van de Ven, M.F.C., Wu, S., Yu, J., and Molenaar, A.A.A. 2009. Investigating the self-healing capability of bituminous binders, Road Mater. Pavement Design. Cilt. 10 s. 81–94. DOI: 10.1080/ 14680629. 2009.9690237
  • [4] Qiu, J., Van de Ven, M.F.C., Wu, S., Yu, J., and Molenaar, A.A.A. 2012. Evaluating self healing capability of bituminous mastics. Experimental Mechanics, cilt. 52, s. 1163–1171. DOI: 10.1007/s11340-011-9573-1
  • [5] B. Hilloulin, K. Van Tittelboom, E. Gruyaert, et al. 2013. Design of polymeric capsules for autonomous healing of cracks in cementitious materials. 4th International Conference on Self-Healing Materials
  • [6] A. Gonzalez, J. Norambuena-Contreras, L. Storey, et al. 2018. Effect of RAP and fibers addition on asphalt mixtures with self-healing properties gained by microwave radiation heating, Construction and Building Materials. Cilt. 159, s. 164–174. DOI: 10.1016/j.conbuildmat.2017.10.070
  • [7] Y.R. Kim, D. Little, R. Lytton. 2001. Evaluation of microdamage, healing, and heat dissipation of asphalt mixtures, using a dynamic mechanical analyzer, Transportation Research Record: Journal of the Transportation Research Board. Cilt. 1767, S. 60-66. DOI: 10.3141/1767-08
  • [8] T.P. Grant. 2001. Determination of Asphalt Mixture Healing Rate Using the Superpave Indirect Tensile Test. University of Florida. Yüksek lısans tezı, 82s, Florida.
  • [9] Dallas, N. Little, R.L. Lytton, B. Chairl, et al. 1999. An analysis of the mechanism of microdamage healing based on the application of micromechanics first principles of fracture and healing, Association of Asphalt Pavement Technologists.
  • [10] Amir Tabakovic´ , Dirk Braak, Mark van Gerwen, Oguzhan Copuroglu, Wouter Post, Santiago J. Garcia, Erik Schlangen. 2017. The compartmented alginate fibres optimisation for bitumen rejuvenator encapsulation. Journal of Traffic and Transportation Engineering. Cilt. 4, s. 347–359, https://doi.org/10.1016/j.jtte.2017.01.004.
  • [11] Norambuena-Contreras Jose, Gonzalez-Torre Irene. 2017. Influence of the microwave heating time on the self-healing properties of asphalt mixtures, Applied Sciences. cilt 7/10, s. 1076 https://doi.org/10.3390/app7101076.
  • [12] Chiu, C., and Lee, M. 2006. Effectiveness of seal rejuvenators for bituminous pavement surfaces, Journal of Testing and Evaluation. cilt 34, s.390–394.DOI: 10.1520/JTE100056
  • [13] Garcia, A., Schlangen, E., Van de Ven M., and Sierra-Beltrán, G. 2010. Preparation of capsules containing rejuvenators for their use in asphalt concrete, Journal of Hazardous Materials. Cilt 184, S. 603–611. DOI: 501–542.1767-08.
  • [14] Aissa, B., Therriault, D., Haddad, E., and Jamroz, W. 2012. Self-healing materials systems: overview of major approaches and recent developed technologies, Advances in Material Science and Engineering. Cilt 2012. DOI: https://doi.org/10.1155/2012/854203
  • [15] Su, J.F., Qiu, J., and Schlangen, E. 2013. Stability investigation of self-healing microcapsules containing rejuvenator for bitumen, Polymer Degradation and Stability., cilt 98, S. 1205–1215. DOI: 10.1016/j.polymdegradstab.2013.03.008
  • [16] Su, J.F., Schlangen, E. and Qiu, J. 2013. Design and construction of microcapsules containing rejuvenator for asphalt, Powder Technology. Cilt 235, S. 563–571. DOI: https://doi.org/10.1016/j.powtec.2012.11.013
  • [17] Li, R., Zhou, T., Pei, J. 2015. Design, preparation and properties of microcapsules containing rejuvenator for asphalt, Construction and Building Materials. cilt 99,S. 143–149. DOI: 10.1016/j.conbuildmat.2015.09.017
  • [18] Sawada, K., and Urakawa, H. 2005. Preparation of photosensitive color-producing microcapsules utilizing in situ polymerization method, Dyes and Pigments.cilt 65, s. 45–49. DOI: 10.1016/j.dyepig.2004.06.021

Characterization of Asphalt Binder Containing Microcapsules

Yıl 2021, , 207 - 215, 15.01.2021
https://doi.org/10.21205/deufmd.2021236718

Öz

Asphalt pavements are exposed to traffic loading and adverse environmental effects such as rain and oxidation which result in decreasing their relaxation capabilities and the initiation of cracks. Recent research highlights the importance of developing long life pavements. One of the possible ways is to utilize innovative maintenance techniques such as self-healing technologies in order to reverse the aging process in asphalt binder. So as to achieve this goal, self-healing microcapsules seems to be an effective way to autonomously repair the micro-cracks, restore original mechanical properties, then further slow fatigue cracks growth and increase the fatigue life of the pavement.
In this study urea formaldehyde (UF) self-healing microcapsule were prepared by in-situ polymerization method. Following the characterization of microcapsules, different amount of microcapsules (6, 8, 9 ,10, 11 and 12%) were added into bitumen. Rheological properties of the samples have been determined by means of Dynamic Shear Rheometer. Ductility test was also employed to characterize the mechanical properties of the bitumen samples.
Based on results the produced microcapsules can endure high temperatures, which indicate that these microcapsules can resist the thermal influence of bitumen in application. Besides, bitumen samples involving microcapsules exhibit satisfactory results in terms of complex modulus (G*) and bitumen recovery tests. The recovery value of the modulus increased first and then decreased with the amount of microcapsules. Microcapsules containing rejuvenator will be a promising product to realize the smart pavements.

Kaynakça

  • [1] Organisation for Economic Cooperation and Development. 2013. Road traffic, vehicles and networks. In: Environment at a glance 2013: OECD indicators. OECD, Paris
  • [2] European Union Road Federation. 2012. European road statistics 2012. European Union Road Federation (ERF), Brussels.
  • [3] Qiu, J., Van de Ven, M.F.C., Wu, S., Yu, J., and Molenaar, A.A.A. 2009. Investigating the self-healing capability of bituminous binders, Road Mater. Pavement Design. Cilt. 10 s. 81–94. DOI: 10.1080/ 14680629. 2009.9690237
  • [4] Qiu, J., Van de Ven, M.F.C., Wu, S., Yu, J., and Molenaar, A.A.A. 2012. Evaluating self healing capability of bituminous mastics. Experimental Mechanics, cilt. 52, s. 1163–1171. DOI: 10.1007/s11340-011-9573-1
  • [5] B. Hilloulin, K. Van Tittelboom, E. Gruyaert, et al. 2013. Design of polymeric capsules for autonomous healing of cracks in cementitious materials. 4th International Conference on Self-Healing Materials
  • [6] A. Gonzalez, J. Norambuena-Contreras, L. Storey, et al. 2018. Effect of RAP and fibers addition on asphalt mixtures with self-healing properties gained by microwave radiation heating, Construction and Building Materials. Cilt. 159, s. 164–174. DOI: 10.1016/j.conbuildmat.2017.10.070
  • [7] Y.R. Kim, D. Little, R. Lytton. 2001. Evaluation of microdamage, healing, and heat dissipation of asphalt mixtures, using a dynamic mechanical analyzer, Transportation Research Record: Journal of the Transportation Research Board. Cilt. 1767, S. 60-66. DOI: 10.3141/1767-08
  • [8] T.P. Grant. 2001. Determination of Asphalt Mixture Healing Rate Using the Superpave Indirect Tensile Test. University of Florida. Yüksek lısans tezı, 82s, Florida.
  • [9] Dallas, N. Little, R.L. Lytton, B. Chairl, et al. 1999. An analysis of the mechanism of microdamage healing based on the application of micromechanics first principles of fracture and healing, Association of Asphalt Pavement Technologists.
  • [10] Amir Tabakovic´ , Dirk Braak, Mark van Gerwen, Oguzhan Copuroglu, Wouter Post, Santiago J. Garcia, Erik Schlangen. 2017. The compartmented alginate fibres optimisation for bitumen rejuvenator encapsulation. Journal of Traffic and Transportation Engineering. Cilt. 4, s. 347–359, https://doi.org/10.1016/j.jtte.2017.01.004.
  • [11] Norambuena-Contreras Jose, Gonzalez-Torre Irene. 2017. Influence of the microwave heating time on the self-healing properties of asphalt mixtures, Applied Sciences. cilt 7/10, s. 1076 https://doi.org/10.3390/app7101076.
  • [12] Chiu, C., and Lee, M. 2006. Effectiveness of seal rejuvenators for bituminous pavement surfaces, Journal of Testing and Evaluation. cilt 34, s.390–394.DOI: 10.1520/JTE100056
  • [13] Garcia, A., Schlangen, E., Van de Ven M., and Sierra-Beltrán, G. 2010. Preparation of capsules containing rejuvenators for their use in asphalt concrete, Journal of Hazardous Materials. Cilt 184, S. 603–611. DOI: 501–542.1767-08.
  • [14] Aissa, B., Therriault, D., Haddad, E., and Jamroz, W. 2012. Self-healing materials systems: overview of major approaches and recent developed technologies, Advances in Material Science and Engineering. Cilt 2012. DOI: https://doi.org/10.1155/2012/854203
  • [15] Su, J.F., Qiu, J., and Schlangen, E. 2013. Stability investigation of self-healing microcapsules containing rejuvenator for bitumen, Polymer Degradation and Stability., cilt 98, S. 1205–1215. DOI: 10.1016/j.polymdegradstab.2013.03.008
  • [16] Su, J.F., Schlangen, E. and Qiu, J. 2013. Design and construction of microcapsules containing rejuvenator for asphalt, Powder Technology. Cilt 235, S. 563–571. DOI: https://doi.org/10.1016/j.powtec.2012.11.013
  • [17] Li, R., Zhou, T., Pei, J. 2015. Design, preparation and properties of microcapsules containing rejuvenator for asphalt, Construction and Building Materials. cilt 99,S. 143–149. DOI: 10.1016/j.conbuildmat.2015.09.017
  • [18] Sawada, K., and Urakawa, H. 2005. Preparation of photosensitive color-producing microcapsules utilizing in situ polymerization method, Dyes and Pigments.cilt 65, s. 45–49. DOI: 10.1016/j.dyepig.2004.06.021
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Amir Onsori 0000-0003-0503-4368

Burak Sengoz 0000-0003-0684-4880

Ali Topal

Aylin Ziylan

Yayımlanma Tarihi 15 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Onsori, A., Sengoz, B., Topal, A., Ziylan, A. (2021). Characterization of Asphalt Binder Containing Microcapsules. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(67), 207-215. https://doi.org/10.21205/deufmd.2021236718
AMA Onsori A, Sengoz B, Topal A, Ziylan A. Characterization of Asphalt Binder Containing Microcapsules. DEUFMD. Ocak 2021;23(67):207-215. doi:10.21205/deufmd.2021236718
Chicago Onsori, Amir, Burak Sengoz, Ali Topal, ve Aylin Ziylan. “Characterization of Asphalt Binder Containing Microcapsules”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, sy. 67 (Ocak 2021): 207-15. https://doi.org/10.21205/deufmd.2021236718.
EndNote Onsori A, Sengoz B, Topal A, Ziylan A (01 Ocak 2021) Characterization of Asphalt Binder Containing Microcapsules. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 67 207–215.
IEEE A. Onsori, B. Sengoz, A. Topal, ve A. Ziylan, “Characterization of Asphalt Binder Containing Microcapsules”, DEUFMD, c. 23, sy. 67, ss. 207–215, 2021, doi: 10.21205/deufmd.2021236718.
ISNAD Onsori, Amir vd. “Characterization of Asphalt Binder Containing Microcapsules”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/67 (Ocak 2021), 207-215. https://doi.org/10.21205/deufmd.2021236718.
JAMA Onsori A, Sengoz B, Topal A, Ziylan A. Characterization of Asphalt Binder Containing Microcapsules. DEUFMD. 2021;23:207–215.
MLA Onsori, Amir vd. “Characterization of Asphalt Binder Containing Microcapsules”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 23, sy. 67, 2021, ss. 207-15, doi:10.21205/deufmd.2021236718.
Vancouver Onsori A, Sengoz B, Topal A, Ziylan A. Characterization of Asphalt Binder Containing Microcapsules. DEUFMD. 2021;23(67):207-15.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.