BibTex RIS Kaynak Göster

NORMALİZE WRİGHT FONKSİONLARININ KONVEKSE-YAKINLIĞI

Yıl 2016, Cilt: 18 Sayı: 54, 290 - 303, 01.09.2016

Öz

In this paper, a new subclass
K( , ), , 0,1      
of analytic functions in the open unit disk
is introduced. The purpose of the present paper is to investigate some characterizations for the
normalized Wright functions to be in the subclass
K( , ), , 0,1      . In this study,
various sufficient conditions for the normalized Wright functions to be in this class are also
obtained

Kaynakça

  • [1] Wright EM. On the coefficients of power series having exponential singularities, Journal London Mathematics Society, Volume 8, 1933, pp.71-79.
  • [2] Gorenflo R, Luchko Yu, Mainardi F. Analytic properties and applications of Wright functions, Fractional Calculus & Applied Analysis, Volume 2, No. 4, 1999, pp.383-414.
  • [3] Podlubny I. Fractional differential equations, San Diego: Academic Press, 1999.
  • [4] Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives: Theory and Applications, New York: Gordon and Breach, 1993.
  • [5] Mainardi F. (Ed. Carpinteri A and Mainardi F.) Fractional calculus: some basic problemsin continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics, Wen: Springer Verlag, 1971.
  • [6] Luchko Yu, Gorenflo R. Scale-invariant solutions of a partial differential equation of fractional order, Fractional Calculus & Applied Analysis, Volume 1, No 1, 1998, pp. 63- 78.
  • [7] Prajapat JK. Certain geometric properties of the Wright function, Inegral Transforms and Special Functions, Volume 26, No. 3, 2015, pp. 203-212.
  • [8] Duren PL. Univalent Functions, Grundlehren der Mathematischen Wissenshaften, Bd. 259, New York: Springer-Verlag, 1983.
  • [9] Goodman AW. Univalent Functions, Volume I, Washington: Polygonal, 1983.
  • [10] Srivastava HM and Owa S. (Editors) Current Topics in Analytic Function Theory,Singapore: World Scientific, 1992
  • [11] Goodman AW. Univalent functions, Vols. 1-2, Tampa, FL: Mariner, 1983.
  • [12] Murugusundaramoorthy G, Vijaya K and Porwal S. Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacettepe Journal of Mathematics and Statistics, DOI: 10.15672/HJMS201664513110. (In press).

CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS

Yıl 2016, Cilt: 18 Sayı: 54, 290 - 303, 01.09.2016

Öz

Bu makalede açık birim diskte analitik fonksiyonların
K( , ), , 0,1      
yeni bir alt sınıfı
tanımlandı. Makalenin amacı, normalize Wright fonksiyonlarının analitik fonksiyonların
K( , ), , 0,1      
alt sınıfına ait olması içinbazı karakterizasyonları araştırmaktır. Bu
çalışmada normalize Wright fonksiyonlarının bu sınıfa ait olması için çeşitli yeterli koşullar
da elde edilir

Kaynakça

  • [1] Wright EM. On the coefficients of power series having exponential singularities, Journal London Mathematics Society, Volume 8, 1933, pp.71-79.
  • [2] Gorenflo R, Luchko Yu, Mainardi F. Analytic properties and applications of Wright functions, Fractional Calculus & Applied Analysis, Volume 2, No. 4, 1999, pp.383-414.
  • [3] Podlubny I. Fractional differential equations, San Diego: Academic Press, 1999.
  • [4] Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives: Theory and Applications, New York: Gordon and Breach, 1993.
  • [5] Mainardi F. (Ed. Carpinteri A and Mainardi F.) Fractional calculus: some basic problemsin continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics, Wen: Springer Verlag, 1971.
  • [6] Luchko Yu, Gorenflo R. Scale-invariant solutions of a partial differential equation of fractional order, Fractional Calculus & Applied Analysis, Volume 1, No 1, 1998, pp. 63- 78.
  • [7] Prajapat JK. Certain geometric properties of the Wright function, Inegral Transforms and Special Functions, Volume 26, No. 3, 2015, pp. 203-212.
  • [8] Duren PL. Univalent Functions, Grundlehren der Mathematischen Wissenshaften, Bd. 259, New York: Springer-Verlag, 1983.
  • [9] Goodman AW. Univalent Functions, Volume I, Washington: Polygonal, 1983.
  • [10] Srivastava HM and Owa S. (Editors) Current Topics in Analytic Function Theory,Singapore: World Scientific, 1992
  • [11] Goodman AW. Univalent functions, Vols. 1-2, Tampa, FL: Mariner, 1983.
  • [12] Murugusundaramoorthy G, Vijaya K and Porwal S. Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacettepe Journal of Mathematics and Statistics, DOI: 10.15672/HJMS201664513110. (In press).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA86HK59ZE
Bölüm Araştırma Makalesi
Yazarlar

Nizami Mustafa Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 18 Sayı: 54

Kaynak Göster

APA Mustafa, N. (2016). CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 18(54), 290-303.
AMA Mustafa N. CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS. DEUFMD. Eylül 2016;18(54):290-303.
Chicago Mustafa, Nizami. “CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 18, sy. 54 (Eylül 2016): 290-303.
EndNote Mustafa N (01 Eylül 2016) CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18 54 290–303.
IEEE N. Mustafa, “CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS”, DEUFMD, c. 18, sy. 54, ss. 290–303, 2016.
ISNAD Mustafa, Nizami. “CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18/54 (Eylül 2016), 290-303.
JAMA Mustafa N. CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS. DEUFMD. 2016;18:290–303.
MLA Mustafa, Nizami. “CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 18, sy. 54, 2016, ss. 290-03.
Vancouver Mustafa N. CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS. DEUFMD. 2016;18(54):290-303.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.