Araştırma Makalesi
BibTex RIS Kaynak Göster

Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı

Yıl 2021, Cilt: 23 Sayı: 68, 469 - 477, 24.05.2021
https://doi.org/10.21205/deufmd.2021236810

Öz

Bu çalışmada, çoklu otonom sistemler için güdüm algoritma tasarımları sunulmuştur. Otonom sistem olarak jenerik bir füze ele alınmıştır. İlk olarak, eş zamanlı varış kontrolü için menzilin zamana bağlı genel bir polinom olarak şekillendirildiği bir güdüm tasarımı sunulmuştur. Sonrasında bir lider ve takipçilerden oluşan bir sistem için füze güdümü kullanılarak bir takip algoritması tasarımı önerilmiştir. Bunun için varış açısının kontrolünü sağlayan bir yöntem, lidere göre sabit olarak konumlandırılan bir sanal lideri kuyruk takibi modunda izlemek için kullanılmıştır. Her iki ortak saldırı yaklaşımında, otonom sisteme yeni üyeler, görev tanımları merkezi kontrol birimi ya da lider tarafından tanımlanarak dahil olabilirler. Önerilen yaklaşımlar füzeler için örneklenmiş olup, insansız hava araçlarında ve robotik alanında da kullanılabilir.

Kaynakça

  • [1] Zhou, J., Yang, J., 2016. Distributed Guidance Law Design for Cooperative Simultaneous Attacks with Multiple Missiles. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 10, s. 2439–2447. DOI: 10.2514/1.G001609
  • [2] Belanger, J., Desbiens, A., Gagnon, E. ,2007. UAV Guidance with Control of Arrival Time. American Control Conference, New York, USA, s. 4488-4493, . DOI: 10.1109/ACC.2007.4282775
  • [3] Zarchan, P., Tactical and Strategic Missile Guidance, 6th ed., AIAA, Reston, VA, 2012.
  • [4] Jeon, I.-S., Lee, J.-I., Tahk, M.-J., 2016. Impact Time Control Guidance with Generalized Proportional Navigation Based on Nonlinear Formulation. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 8, s. 1887–1892. DOI: 10.2514/1.G001681
  • [5] Tekin R,. Erer K.S., Holzapfel F., 2016. Control of Impact Time with Increased Robustness via Feedback Linearization. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 7, s. 1682–1689. DOI: 10.2514/1.G001719
  • [6] Kim M., Jung, B., Han B., Lee S., Kim Y., 2015, Lyapunov-Based Impact Time Control Guidance Laws Against Stationary Targets. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 51, No. 2, s. 1111–1122. DOI: 10.1109/TAES.2014.130717
  • [7] Saleem A, Ratnoo A., 2016. Lyapunov-Based Guidance Law for Impact Time Control and Simultaneous Arrival. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 1, s. 164–173. DOI: 10.2514/1.G001349
  • [8] Cho D, Kim HJ, Tahk MJ., 2016. Nonsingular Sliding Mode Guidance for Impact Time Control. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 1, s. 61–68. DOI: 10.2514/1.G001167
  • [9] Kumar, S.R., Ghose, D. , 2015. Impact Time Guidance for Large Heading Errors Using Sliding Mode Control. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 51, No. 4, s. 3123 – 3138. DOI: 10.1109/TAES.2015.140137
  • [10] Tekin, R, Erer, K.S, Holzapfel, F. , 2017. Polynomial Shaping of the Look Angle for Impact Time Control. Journal of Guidance, Control, and Dynamics, Cilt. 40, No. 10, s. 266-273. DOI: 10.2514/1.G002751
  • [11] Kim, H., Lee, J., Kim, H.J., Kwon, H., Park, J., 2019. Look-Angle-Shaping Guidance Law for Impact Angle and Time Control with Field-of-View Constraint. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 56, No. 2, s. 1602-1612. DOI: 10.1109/TAES.2019.2924175
  • [12] Erer KS. 2015. Biased Proportional Navigation Guidance for Impact Angle Control with Extension to Three-Dimensional Engagements, Doktora Tezi, Orta Doğu Teknik Üniversitesi, Ankaraa.
  • [13] Kim, B.S., Lee, J.G., Han, H.S., 1988. Biased PNG Law for Impact with Angular Constraint. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 34, No. 1, s. 277–288. DOI: 10.1109/7.640285
  • [14] Tekin R, Erer KS., 2015. Switched-Gain Guidance for Impact Angle Control Under Physical Constraints. Journal of Guidance, Control, and Dynamics, Cilt. 38, No. 2, s. 205–216. DOI: 10.2514/1.G000766
  • [15] Ryoo, C.-K., Cho, H., Tahk, M.-J., 2005. Optimal Guidance Laws with Terminal Impact Angle Constraint. Journal of Guidance, Control, and Dynamics, Cilt. 28, No. 4, s. 724–732. DOI: 10.2514/1.8392
  • [16] Ohlmeyer, E.J., Phillips, C.A., 2006. Generalized Vector Explicit Guidance. Journal of Guidance, Control, and Dynamics, Cilt. 29, No. 2, s. 261–268. DOI: 10.2514/1.14956
  • [17] Yao, Z., Yongzhi, S., Xiangdong, L., 2014. Sliding Mode Control Based Guidance Law with Impact Angle. Chinese Journal of Aeronautics, Cilt. 27, No. 1, s. 145–152. DOI: 10.1016/j.cja.2013.12.011
  • [18] Zhao, Y., Sheng, Y.Z., Liu, X.D., 2014. Sliding Mode Control Based Guidance Law with Impact Angle Constraint. Chinese Journal of Aeronautics, Cilt. 27, No. 1, s. 145–152. DOI: 10.1016/j.cja.2013.12.011
  • [19] Kang, S., Tekin, R., Zhang, L., 2020, A Novel Approach for Impact Angle Control Under Look-Angle Constraint”. Chinese Journal of Aeronautics, submitted, 2020.
  • [20] Lee, C.H., Kim, T.H., Tahk M.J., Whang, I-H., 2013. Polynomial Guidance Laws Considering Terminal Impact Angle and Acceleration Constraints. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 49, No. 1, 74–92. DOI: 10.1109/TAES.2013.6404092
  • [21] Tekin R. 2018. A New Design Framework for Impact Time Control, Doktora Tezi, Münih Teknik Üniversitesi, Münih, Almanya.
  • [22]Zadka, B., Tripathy, T., Tsalik, R., Shima, T., 2020. A Max-Consensus Cyclic Pursuit Based Guidance Law for Simultaneous Target Interception, European Control Conference, accepted, St. Petersburg, Rusya.
  • [23]Tekin, R., Erer, K.S., Özgören, M.K., 2016. Biased Proportional Navigation with Exponentially Decaying Error for Impact Angle Control and Path Following, Proceedings of the 24th Mediterranean Control and Automation Conference, Atina, Yunanistan, 21-24 Haziran. DOI: 10.1109/MED.2016.7535911
  • [24] Medagoda, E, Gibbens, P., 2010. Synthetic-Waypoint Guidance Algorithm for Following a DesiredFlight Trajectory. AIAA Journal of Guidance, Control, and Dynamics, Cilt. 33, No. 2, 601–606. DOI: 10.2514/1.46204
  • [25] Lennox D., 2004. Cruise Missile Technologies and Performance Analysis. Jane's Strategic Weapon Systems, 40, Jane's Defense Data.

Guidance Algorithm Design for Multi-Missile Systems

Yıl 2021, Cilt: 23 Sayı: 68, 469 - 477, 24.05.2021
https://doi.org/10.21205/deufmd.2021236810

Öz

In this paper, guidance algorithms design for multi-autonomous systems is described. A generic missile is considered as an autonomous system. First, a guidance law, where the range is shaped as a function of time, is presented for salvo attack. Second, a tracking algorithm, which makes use of missile guidance algorithms, is proposed for a system consisting of a leader and followers. For this purpose, an impact angle control algorithm is used for tail chase tracking of the leader, where a virtual leader is attached to a fixed position of the leader. In each of these two approaches, new members can join the system, where the mission is defined from a central control unit or from a leader. The suggested approached is exemplified for missiles; however, they could be used in unmanned air vehicles and in robotics.

Kaynakça

  • [1] Zhou, J., Yang, J., 2016. Distributed Guidance Law Design for Cooperative Simultaneous Attacks with Multiple Missiles. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 10, s. 2439–2447. DOI: 10.2514/1.G001609
  • [2] Belanger, J., Desbiens, A., Gagnon, E. ,2007. UAV Guidance with Control of Arrival Time. American Control Conference, New York, USA, s. 4488-4493, . DOI: 10.1109/ACC.2007.4282775
  • [3] Zarchan, P., Tactical and Strategic Missile Guidance, 6th ed., AIAA, Reston, VA, 2012.
  • [4] Jeon, I.-S., Lee, J.-I., Tahk, M.-J., 2016. Impact Time Control Guidance with Generalized Proportional Navigation Based on Nonlinear Formulation. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 8, s. 1887–1892. DOI: 10.2514/1.G001681
  • [5] Tekin R,. Erer K.S., Holzapfel F., 2016. Control of Impact Time with Increased Robustness via Feedback Linearization. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 7, s. 1682–1689. DOI: 10.2514/1.G001719
  • [6] Kim M., Jung, B., Han B., Lee S., Kim Y., 2015, Lyapunov-Based Impact Time Control Guidance Laws Against Stationary Targets. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 51, No. 2, s. 1111–1122. DOI: 10.1109/TAES.2014.130717
  • [7] Saleem A, Ratnoo A., 2016. Lyapunov-Based Guidance Law for Impact Time Control and Simultaneous Arrival. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 1, s. 164–173. DOI: 10.2514/1.G001349
  • [8] Cho D, Kim HJ, Tahk MJ., 2016. Nonsingular Sliding Mode Guidance for Impact Time Control. Journal of Guidance, Control, and Dynamics, Cilt. 39, No. 1, s. 61–68. DOI: 10.2514/1.G001167
  • [9] Kumar, S.R., Ghose, D. , 2015. Impact Time Guidance for Large Heading Errors Using Sliding Mode Control. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 51, No. 4, s. 3123 – 3138. DOI: 10.1109/TAES.2015.140137
  • [10] Tekin, R, Erer, K.S, Holzapfel, F. , 2017. Polynomial Shaping of the Look Angle for Impact Time Control. Journal of Guidance, Control, and Dynamics, Cilt. 40, No. 10, s. 266-273. DOI: 10.2514/1.G002751
  • [11] Kim, H., Lee, J., Kim, H.J., Kwon, H., Park, J., 2019. Look-Angle-Shaping Guidance Law for Impact Angle and Time Control with Field-of-View Constraint. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 56, No. 2, s. 1602-1612. DOI: 10.1109/TAES.2019.2924175
  • [12] Erer KS. 2015. Biased Proportional Navigation Guidance for Impact Angle Control with Extension to Three-Dimensional Engagements, Doktora Tezi, Orta Doğu Teknik Üniversitesi, Ankaraa.
  • [13] Kim, B.S., Lee, J.G., Han, H.S., 1988. Biased PNG Law for Impact with Angular Constraint. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 34, No. 1, s. 277–288. DOI: 10.1109/7.640285
  • [14] Tekin R, Erer KS., 2015. Switched-Gain Guidance for Impact Angle Control Under Physical Constraints. Journal of Guidance, Control, and Dynamics, Cilt. 38, No. 2, s. 205–216. DOI: 10.2514/1.G000766
  • [15] Ryoo, C.-K., Cho, H., Tahk, M.-J., 2005. Optimal Guidance Laws with Terminal Impact Angle Constraint. Journal of Guidance, Control, and Dynamics, Cilt. 28, No. 4, s. 724–732. DOI: 10.2514/1.8392
  • [16] Ohlmeyer, E.J., Phillips, C.A., 2006. Generalized Vector Explicit Guidance. Journal of Guidance, Control, and Dynamics, Cilt. 29, No. 2, s. 261–268. DOI: 10.2514/1.14956
  • [17] Yao, Z., Yongzhi, S., Xiangdong, L., 2014. Sliding Mode Control Based Guidance Law with Impact Angle. Chinese Journal of Aeronautics, Cilt. 27, No. 1, s. 145–152. DOI: 10.1016/j.cja.2013.12.011
  • [18] Zhao, Y., Sheng, Y.Z., Liu, X.D., 2014. Sliding Mode Control Based Guidance Law with Impact Angle Constraint. Chinese Journal of Aeronautics, Cilt. 27, No. 1, s. 145–152. DOI: 10.1016/j.cja.2013.12.011
  • [19] Kang, S., Tekin, R., Zhang, L., 2020, A Novel Approach for Impact Angle Control Under Look-Angle Constraint”. Chinese Journal of Aeronautics, submitted, 2020.
  • [20] Lee, C.H., Kim, T.H., Tahk M.J., Whang, I-H., 2013. Polynomial Guidance Laws Considering Terminal Impact Angle and Acceleration Constraints. IEEE Transactions on Aerospace and Electronic Systems, Cilt. 49, No. 1, 74–92. DOI: 10.1109/TAES.2013.6404092
  • [21] Tekin R. 2018. A New Design Framework for Impact Time Control, Doktora Tezi, Münih Teknik Üniversitesi, Münih, Almanya.
  • [22]Zadka, B., Tripathy, T., Tsalik, R., Shima, T., 2020. A Max-Consensus Cyclic Pursuit Based Guidance Law for Simultaneous Target Interception, European Control Conference, accepted, St. Petersburg, Rusya.
  • [23]Tekin, R., Erer, K.S., Özgören, M.K., 2016. Biased Proportional Navigation with Exponentially Decaying Error for Impact Angle Control and Path Following, Proceedings of the 24th Mediterranean Control and Automation Conference, Atina, Yunanistan, 21-24 Haziran. DOI: 10.1109/MED.2016.7535911
  • [24] Medagoda, E, Gibbens, P., 2010. Synthetic-Waypoint Guidance Algorithm for Following a DesiredFlight Trajectory. AIAA Journal of Guidance, Control, and Dynamics, Cilt. 33, No. 2, 601–606. DOI: 10.2514/1.46204
  • [25] Lennox D., 2004. Cruise Missile Technologies and Performance Analysis. Jane's Strategic Weapon Systems, 40, Jane's Defense Data.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Raziye Tekin 0000-0001-7628-962X

Koray Savaş Erer 0000-0002-3349-6730

Yayımlanma Tarihi 24 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 23 Sayı: 68

Kaynak Göster

APA Tekin, R., & Erer, K. S. (2021). Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(68), 469-477. https://doi.org/10.21205/deufmd.2021236810
AMA Tekin R, Erer KS. Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı. DEUFMD. Mayıs 2021;23(68):469-477. doi:10.21205/deufmd.2021236810
Chicago Tekin, Raziye, ve Koray Savaş Erer. “Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, sy. 68 (Mayıs 2021): 469-77. https://doi.org/10.21205/deufmd.2021236810.
EndNote Tekin R, Erer KS (01 Mayıs 2021) Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 68 469–477.
IEEE R. Tekin ve K. S. Erer, “Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı”, DEUFMD, c. 23, sy. 68, ss. 469–477, 2021, doi: 10.21205/deufmd.2021236810.
ISNAD Tekin, Raziye - Erer, Koray Savaş. “Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/68 (Mayıs 2021), 469-477. https://doi.org/10.21205/deufmd.2021236810.
JAMA Tekin R, Erer KS. Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı. DEUFMD. 2021;23:469–477.
MLA Tekin, Raziye ve Koray Savaş Erer. “Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 23, sy. 68, 2021, ss. 469-77, doi:10.21205/deufmd.2021236810.
Vancouver Tekin R, Erer KS. Çoklu Füze Sistemleri için Güdüm Algoritması Tasarımı. DEUFMD. 2021;23(68):469-77.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.