Araştırma Makalesi
BibTex RIS Kaynak Göster

Generalized Quantum Teleportation Protocol

Yıl 2023, Cilt: 25 Sayı: 73, 69 - 80, 26.01.2023
https://doi.org/10.21205/deufmd.2023257306

Öz

Within the scope of this study, generalization of the single qubit (quantum bit) teleportation protocol to multi-qubit systems has been examined. Then, the possibilities of teleporting to more than one target were discussed and a protocol for this was proposed. Within the scope of the developed theoretical framework, the generalization of quantum logic gates that modify qubits is also discussed. General versions of these quantum logic gates have been created and they have been shown to work for special cases in the literature. It has been determined that the equations formed in the theoretical framework established as a result of the generalization of the teleportation to many qubits and many targets, contain a pattern, and a way to carry out the protocol without dealing with complex tensor products one by one is proposed through this pattern.
Within the scope of the study, Python computer programs were created for multi-qubit - single target, multi-qubit - multi-target protocols. It has been observed that the created programs successfully produce the results predicted by the theoretical framework presented. Through these programs, it is possible to perform long and error-free mathematical operations in a short time. The generated program results also prove the existence of the above-mentioned pattern.

Kaynakça

  • 1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.,1993,"Teleporting an unknown quantum state via dual classic and Einstein–Podolsky–Rosen channels", Phys. Rev. Lett. 70, 1895–1899
  • 2. Ikram, M., Zhu, S.Y., Zubairy, M.S.,2000, "Quantum teleportation of an entangled state" Phys. Rev. A. 62, 022307
  • 3. Rigolin, G. ,2005, "Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement", Phys. Rev. A. 71, 032303
  • 4. Yang, C.P., Guo, G.C. ,2000, " Multiparticle generalization of teleportation" Chin. Phys. Lett. 17, 162–164
  • 5. Lee, J., Min, H., Oh, S.D. ,2002, " Multipartite entanglement for entanglement teleportation", Phys. Rev. A. 66,052318
  • 6. Cheung, C.Y., Zhang, Z.J. ,2009, " Criterion for faithful teleportation with an arbitrary multiparticle channel", Phys.Rev. A. 80, 022327
  • 7. Zhao,M.J., 2011," Faithful teleportation with arbitrary pure or mixed resource states" J. Phys. AMath. Theor.44, 215302
  • 8. Praksh, H., Verma, V.,2012,"Minimum assured fidelity and minimum average fidelity in quantum teleportation ofsingle qubit using non-maximally entangled states", Quantum Inf. Process. 11, 1951–1959
  • 9. Meng, Q., Long, X.S., Yue, Z.X.,2012," Standard teleportation of one-qubit state and partial teleportation of twoqubitstate via X-state" Commun. Theor. Phys. 57, 201–204
  • 10. Verma, V., Prakash, H. ,2016," Standard quantum teleportation and controlled quantum teleportation of arbitrary N-qubit information state" Int. J. Theo. Phy. 55, 2061–2070
  • 11. Cai, T., Jiang, M.,2018," Improving the teleportation scheme of three-qubit state with a four-qubit Quantum Channe", Int. J. Theor. Phys. 57, 131–137
  • 12. Karlson, A., Bourennane, M.,1998," Quantum teleportation using three-particle entanglement" Phys. Rev. A. 58, 4394–4400
  • 13. Yang, C.P., Chu, S.I., Han, S. ,2007," Efficient many-party controlled teleportation of multiqubit quantum information via entanglement" Phys. Rev. A. 70, 022329
  • 14. Man, Z.X., Xia, Y.J., An, N.B. ,2007," Genuine multiqubit entanglement and controlled teleportation" Phys. Rev. A. 75, 052306
  • 15. Yan, F., Wang, D.,2003," Probabilistic and controlled teleportation of unknown quantum states", Phys. Lett. A. 316, 297–303
  • 16. Dong, J., Teng, J.F. ,2008," Controlled teleportation of an arbitrary n-qudit state using non-maximally entangled GHZ states", Eur. Phys. J. D. 49, 129–134
  • 17. Nie, Y.Y., Hong, Z.H., Huang, Y.B., Yi, X.J., Li, S.S.,2009," Non-maximally entangled controlled teleportation usingfourparticleskümestates", Int. J. Theor. Phys. 48, 1485–1490
  • 18. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.,2011," Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states", Sci. China. 54, 2208–2216
  • 19. Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.,2016," Quantum teleportation of three and four-qubit stateusingmultiqubitkümestates", Int. J. Theor. Phys. 55, 1820–1823
  • 20. Li, Y.H., Sang, M.H., Wang, X.P., Nie, Y.Y.,2016," Quantum teleportation of a four-qubit state byusingsix-qubitkümestate", Int. J. Theor. Phys. 55, 3547–3550
  • 21. Cao, L., Xue, S., Jiang,M.,2020," Teleportation of an unknownfour-qubitkümestatebased on kümestateswith minimum resource", IEEE Access. 8, 81447–81457
  • 22. Li, M., Zhao, N., Chen, N., Zhu, C.H., Pei, C.X. ,2017," Quantum teleportation of five-qubit state", Int. J. Theor. Phys. 56, 2710–2715
  • 23. Yang, Y., Jiang, M., Zhou, L.L. ,2018," Improving the teleportation scheme of five-qubit state with a seven-qubit Quantum Channel", Int. J. Theor. Phys. 57, 3485–3491
  • 24. Choudhury, B.S., Dhara, A., Samanta, S. ,2017," Teleportation of five-qubit state using six-qubit state", Phys. Part. Nucl. Lett. 14, 644–646
  • 25. Bouwmeester, D., Pan, J.W., Mattle, K., Ebil, M., Weinfurter, H., Zeilinger, A., 1997," Experimental quantum teleportation", Nature (London). 390, 575–579
  • 26. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S. ,1998," Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels", Phys. Rev. Lett. 80, 1121–1125
  • 27. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S. ,1998," Unconditional quantum teleportation", Science. 282, 706–709
  • 28. Lee, H.W. ,2001," Total teleportation of an entangled state", Phys. Rev. A. 64, 014302
  • 29. Verma, V., Singh, N., Singh, R.S., 2021, "Improvement on Quantum Teleportation of Three and Four Qubit States Using Multi-QubitKümeStates", Int. J. Theor. Phys. 60, 3973-3981
  • 30. Li, M., Zhao, N., Chen, N., Zhu, C.H., Pei, C.X. ,2018," Quantum teleportation of eight-qubit stateviasix-qubitkümestate", Int. J. Theor. Phys. 57, 516-522
  • 31. Sang, M.H.,2016," Bidirectional quantum teleportation byusingfive-qubitkümestate", Int. J. Theor. Phys. 55(3), 1333–1335
  • 32. Li, Y.H., Jin, X.M.,2016," Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments", Quantum. Inf. Process. 15(2), 929–945
  • 33. Fatahi, N., Naseri, M., 2021, "Quantum teleportation of a N-qubit entangled state by using a (N+1)-qubitkümestate", Quantum. Inf. Process. 20, 367
  • 34. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S.,Yang, T., Yin, H., Chen, K., Peng, C.Z., Pan, J.W. ,2010, "Experimental free-space quantum teleportation", Nat. Photonics 4, 376–381
  • 35. Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin,X.M., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.,2014,"Quantum teleportation on a photonic chip", Nat. Photonics 8, 770–774
  • 36. Duan, Y., Zha, X., Sun, X., Xia, J., 2014, "Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state", Int. J. Theor. Phys. 53, 2697-2707
  • 37. Cohn ,J.H.E., 1965,"Hadamard matrices and some generalisations", Amer. Math. Monthly, 72:515–518
  • 38. Hedayat, A., Wallis, W.D.,1978, "Hadamard matrices and their applicalions", The. Annals. of. Statistics. 6, 1184-1238
  • 39. Rakotonirina, C., Rasamizafy, S., 2016, "3x3 Kronecker pauli matrices", A Peer Reviewed International Research Journal. 6, 127-134
  • 40. Rakotonirina, C., 2018,"Rectangle gell-mann matrices ", Institut Sup´erieur de Technologie d’AntananarivoIST-T, BP 8122
  • 41. Yang, C. P., Chu, S. I., Han, S., 2005, "Efficient many-party controlled teleportation of multi-qubit quantum informationviaentanglement", arXiv:quant-ph/0402138v2
  • 42. Bolokian, M.,Housmand, M., Sadeghizadeh, M. S., Parvaneh, M., 2020, "Multi-Party Quantum TeleportationwithSelectiveReceiver", Int. J. Theor. Phys. 60, 828-837

Genelleştirilmiş Kuantum Işınlama Protokolü

Yıl 2023, Cilt: 25 Sayı: 73, 69 - 80, 26.01.2023
https://doi.org/10.21205/deufmd.2023257306

Öz

Bu çalışma kapsamında literatürde var olan tek kubit(kuantum bit) ışınlanma/telenakil (quantum teleportation) protokolünün çok kubit sistemlere genellenmesi incelenmiştir. Ardından, birden fazla hedefe telenakil olanakları tartışılarak, buna dair bir protokol önerilmiştir. Geliştirilen teorik çerçeve kapsamında, kubitler üzerinde değişiklik yapan kuantum mantık kapılarının da genellenmesi tartışılmıştır. Söz konusu kuantum mantık kapılarının genel versiyonları oluşturulmuş olup, literatürdeki özel durumlar için çalıştıkları gösterilmiştir. Işınlanmanın çok kubit-çok hedefe genellenmesi sonucu kurulan teorik çerçevede oluşan denklemlerin bir örüntü içerdiği belirlenmiş olup, bu örüntü aracılığı ile karmaşık tensör çarpımları ile tek tek uğraşmaksızın da protokolün gerçekleştirilebileceği bir yol önerilmiştir.
Çalışma kapsamında çok kubit - tek hedef, çok kubit – çok hedef protokollerine yönelik Python bilgisayar programları oluşturulmuştur. Oluşturulan programların, sunulan teorik çerçevenin ön gördüğü sonuçları başarılı bir şekilde ürettiği gözlenmiştir. Bu programlar aracılığı ile, uzun ve hata yapma olasılığı yüksek matematiksel işlemlerin kısa sürede ve hatasız yapılabilmesinin olanağı yaratılmıştır. Oluşturulan program sonuçları aynı zamanda, yukarıda bahsedilen örüntünün varlığını kanıtlamaktadır.

Kaynakça

  • 1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.,1993,"Teleporting an unknown quantum state via dual classic and Einstein–Podolsky–Rosen channels", Phys. Rev. Lett. 70, 1895–1899
  • 2. Ikram, M., Zhu, S.Y., Zubairy, M.S.,2000, "Quantum teleportation of an entangled state" Phys. Rev. A. 62, 022307
  • 3. Rigolin, G. ,2005, "Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement", Phys. Rev. A. 71, 032303
  • 4. Yang, C.P., Guo, G.C. ,2000, " Multiparticle generalization of teleportation" Chin. Phys. Lett. 17, 162–164
  • 5. Lee, J., Min, H., Oh, S.D. ,2002, " Multipartite entanglement for entanglement teleportation", Phys. Rev. A. 66,052318
  • 6. Cheung, C.Y., Zhang, Z.J. ,2009, " Criterion for faithful teleportation with an arbitrary multiparticle channel", Phys.Rev. A. 80, 022327
  • 7. Zhao,M.J., 2011," Faithful teleportation with arbitrary pure or mixed resource states" J. Phys. AMath. Theor.44, 215302
  • 8. Praksh, H., Verma, V.,2012,"Minimum assured fidelity and minimum average fidelity in quantum teleportation ofsingle qubit using non-maximally entangled states", Quantum Inf. Process. 11, 1951–1959
  • 9. Meng, Q., Long, X.S., Yue, Z.X.,2012," Standard teleportation of one-qubit state and partial teleportation of twoqubitstate via X-state" Commun. Theor. Phys. 57, 201–204
  • 10. Verma, V., Prakash, H. ,2016," Standard quantum teleportation and controlled quantum teleportation of arbitrary N-qubit information state" Int. J. Theo. Phy. 55, 2061–2070
  • 11. Cai, T., Jiang, M.,2018," Improving the teleportation scheme of three-qubit state with a four-qubit Quantum Channe", Int. J. Theor. Phys. 57, 131–137
  • 12. Karlson, A., Bourennane, M.,1998," Quantum teleportation using three-particle entanglement" Phys. Rev. A. 58, 4394–4400
  • 13. Yang, C.P., Chu, S.I., Han, S. ,2007," Efficient many-party controlled teleportation of multiqubit quantum information via entanglement" Phys. Rev. A. 70, 022329
  • 14. Man, Z.X., Xia, Y.J., An, N.B. ,2007," Genuine multiqubit entanglement and controlled teleportation" Phys. Rev. A. 75, 052306
  • 15. Yan, F., Wang, D.,2003," Probabilistic and controlled teleportation of unknown quantum states", Phys. Lett. A. 316, 297–303
  • 16. Dong, J., Teng, J.F. ,2008," Controlled teleportation of an arbitrary n-qudit state using non-maximally entangled GHZ states", Eur. Phys. J. D. 49, 129–134
  • 17. Nie, Y.Y., Hong, Z.H., Huang, Y.B., Yi, X.J., Li, S.S.,2009," Non-maximally entangled controlled teleportation usingfourparticleskümestates", Int. J. Theor. Phys. 48, 1485–1490
  • 18. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.,2011," Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states", Sci. China. 54, 2208–2216
  • 19. Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.,2016," Quantum teleportation of three and four-qubit stateusingmultiqubitkümestates", Int. J. Theor. Phys. 55, 1820–1823
  • 20. Li, Y.H., Sang, M.H., Wang, X.P., Nie, Y.Y.,2016," Quantum teleportation of a four-qubit state byusingsix-qubitkümestate", Int. J. Theor. Phys. 55, 3547–3550
  • 21. Cao, L., Xue, S., Jiang,M.,2020," Teleportation of an unknownfour-qubitkümestatebased on kümestateswith minimum resource", IEEE Access. 8, 81447–81457
  • 22. Li, M., Zhao, N., Chen, N., Zhu, C.H., Pei, C.X. ,2017," Quantum teleportation of five-qubit state", Int. J. Theor. Phys. 56, 2710–2715
  • 23. Yang, Y., Jiang, M., Zhou, L.L. ,2018," Improving the teleportation scheme of five-qubit state with a seven-qubit Quantum Channel", Int. J. Theor. Phys. 57, 3485–3491
  • 24. Choudhury, B.S., Dhara, A., Samanta, S. ,2017," Teleportation of five-qubit state using six-qubit state", Phys. Part. Nucl. Lett. 14, 644–646
  • 25. Bouwmeester, D., Pan, J.W., Mattle, K., Ebil, M., Weinfurter, H., Zeilinger, A., 1997," Experimental quantum teleportation", Nature (London). 390, 575–579
  • 26. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S. ,1998," Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels", Phys. Rev. Lett. 80, 1121–1125
  • 27. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S. ,1998," Unconditional quantum teleportation", Science. 282, 706–709
  • 28. Lee, H.W. ,2001," Total teleportation of an entangled state", Phys. Rev. A. 64, 014302
  • 29. Verma, V., Singh, N., Singh, R.S., 2021, "Improvement on Quantum Teleportation of Three and Four Qubit States Using Multi-QubitKümeStates", Int. J. Theor. Phys. 60, 3973-3981
  • 30. Li, M., Zhao, N., Chen, N., Zhu, C.H., Pei, C.X. ,2018," Quantum teleportation of eight-qubit stateviasix-qubitkümestate", Int. J. Theor. Phys. 57, 516-522
  • 31. Sang, M.H.,2016," Bidirectional quantum teleportation byusingfive-qubitkümestate", Int. J. Theor. Phys. 55(3), 1333–1335
  • 32. Li, Y.H., Jin, X.M.,2016," Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments", Quantum. Inf. Process. 15(2), 929–945
  • 33. Fatahi, N., Naseri, M., 2021, "Quantum teleportation of a N-qubit entangled state by using a (N+1)-qubitkümestate", Quantum. Inf. Process. 20, 367
  • 34. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S.,Yang, T., Yin, H., Chen, K., Peng, C.Z., Pan, J.W. ,2010, "Experimental free-space quantum teleportation", Nat. Photonics 4, 376–381
  • 35. Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin,X.M., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.,2014,"Quantum teleportation on a photonic chip", Nat. Photonics 8, 770–774
  • 36. Duan, Y., Zha, X., Sun, X., Xia, J., 2014, "Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state", Int. J. Theor. Phys. 53, 2697-2707
  • 37. Cohn ,J.H.E., 1965,"Hadamard matrices and some generalisations", Amer. Math. Monthly, 72:515–518
  • 38. Hedayat, A., Wallis, W.D.,1978, "Hadamard matrices and their applicalions", The. Annals. of. Statistics. 6, 1184-1238
  • 39. Rakotonirina, C., Rasamizafy, S., 2016, "3x3 Kronecker pauli matrices", A Peer Reviewed International Research Journal. 6, 127-134
  • 40. Rakotonirina, C., 2018,"Rectangle gell-mann matrices ", Institut Sup´erieur de Technologie d’AntananarivoIST-T, BP 8122
  • 41. Yang, C. P., Chu, S. I., Han, S., 2005, "Efficient many-party controlled teleportation of multi-qubit quantum informationviaentanglement", arXiv:quant-ph/0402138v2
  • 42. Bolokian, M.,Housmand, M., Sadeghizadeh, M. S., Parvaneh, M., 2020, "Multi-Party Quantum TeleportationwithSelectiveReceiver", Int. J. Theor. Phys. 60, 828-837
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Emir Oğuz Kaya 0000-0002-3321-3534

Yayımlanma Tarihi 26 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 25 Sayı: 73

Kaynak Göster

APA Kaya, E. O. (2023). Genelleştirilmiş Kuantum Işınlama Protokolü. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(73), 69-80. https://doi.org/10.21205/deufmd.2023257306
AMA Kaya EO. Genelleştirilmiş Kuantum Işınlama Protokolü. DEUFMD. Ocak 2023;25(73):69-80. doi:10.21205/deufmd.2023257306
Chicago Kaya, Emir Oğuz. “Genelleştirilmiş Kuantum Işınlama Protokolü”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, sy. 73 (Ocak 2023): 69-80. https://doi.org/10.21205/deufmd.2023257306.
EndNote Kaya EO (01 Ocak 2023) Genelleştirilmiş Kuantum Işınlama Protokolü. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 73 69–80.
IEEE E. O. Kaya, “Genelleştirilmiş Kuantum Işınlama Protokolü”, DEUFMD, c. 25, sy. 73, ss. 69–80, 2023, doi: 10.21205/deufmd.2023257306.
ISNAD Kaya, Emir Oğuz. “Genelleştirilmiş Kuantum Işınlama Protokolü”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/73 (Ocak 2023), 69-80. https://doi.org/10.21205/deufmd.2023257306.
JAMA Kaya EO. Genelleştirilmiş Kuantum Işınlama Protokolü. DEUFMD. 2023;25:69–80.
MLA Kaya, Emir Oğuz. “Genelleştirilmiş Kuantum Işınlama Protokolü”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 25, sy. 73, 2023, ss. 69-80, doi:10.21205/deufmd.2023257306.
Vancouver Kaya EO. Genelleştirilmiş Kuantum Işınlama Protokolü. DEUFMD. 2023;25(73):69-80.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.