Araştırma Makalesi
BibTex RIS Kaynak Göster

Finish turning of AISI 5140 tempered steel to improve machinability for engineering applications: An experimental approach with dry cutting

Yıl 2023, , 1 - 10, 14.06.2024
https://doi.org/10.57244/dfbd.1392858

Öz

This study explores the best finish turning conditions for AISI 5140 tempered steel which is commonly used in automotive, agriculture and construction sectors thanks to its high strength and toughness properties. The steel is proper for surface hardening which makes it a perfect option to employ in various engineering applications. However, there are a few studies about this material and no paper is seen on finish turning operation which is highly critical to prepare the parts for workspace. Therefore, this work focuses on the impacts of feed rate, cutting speed and depth of cut parameters on roughness of workpiece along with cutting force and cutting temperatures while dry cutting of AISI 5140 steel. The results of the experiments evaluated with statistical analysis and Taguchi’s optimization approach. Accordingly, cutting speed is the dominant parameter on all response parameters namely surface roughness, cutting force and temperature with 92.6%, 61.6% and 91.6% contribution rate respectively. For maximum surface quality, highest cutting depth (0.3 mm) and cutting speed (200m/min) along with lowest feed rate (0.15 mm/rev) should be employed. Such an approach is expected to be a guide for the practical applications where tempered steels are used in different engineering disciplines.

Kaynakça

  • Arrazola, P. J., Özel, T., Umbrello, D., Davies, M., & Jawahir, I. S. (2013). Recent advances in modelling of metal machining processes. Cirp Annals, 62(2), 695-718.
  • Aslan, A. (2020). Optimization and analysis of process parameters for flank wear, cutting forces and vibration in turning of AISI 5140: A comprehensive study. Measurement, 163, 107959.
  • Bican, O., Bayca, S. U., Ocak-Araz, S., Yamanel, B., & Tanis, N. A. (2020). Effects of the boriding process and of quenching and tempering after boriding on the microstructure, hardness and wear of AISI 5140 steel. Surface Review and Letters, 27(06), 1950157.
  • Binali, R., Demirpolat, H., Kuntoğlu, M., & Sağlam, H. (2023). Machinability investigations based on tool wear, surface roughness, cutting temperature, chip morphology and material removal rate during dry and MQL-assisted milling of Nimax mold steel. Lubricants, 11(3), 101.
  • Ebrahimi, A., & Moshksar, M. (2009). Evaluation of machinability in turning of microalloyed and quenched-tempered steels: Tool wear, statistical analysis, chip morphology. Journal of materials processing technology, 209(2), 910-921.
  • Grzesik, W. (2008). Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools. Wear, 265(3-4), 327-335.
  • Huang, X., Ren, Y., Li, T., Zhou, Z., & Zhang, G. (2018). Influence of minimum quantity lubrication parameters on grind-hardening process. Materials and Manufacturing Processes, 33(1), 69-76.
  • Kahraman, F. (2017). Optimization of cutting parameters for surface roughness in turning of studs manufactured from AISI 5140 steel using the Taguchi method. Materials Testing, 59(1), 77-80.
  • Karakan, M., Alsaran, A., & Çelik, A. (2002). Effects of various gas mixtures on plasma nitriding behavior of AISI 5140 steel. Materials Characterization, 49(3), 241-246.
  • Kuntoğlu, M., Acar, O., Gupta, M. K., Sağlam, H., Sarikaya, M., Giasin, K., & Pimenov, D. Y. (2021). Parametric optimization for cutting forces and material removal rate in the turning of AISI 5140. Machines, 9(5), 90.
  • Kuntoğlu, M., Aslan, A., Pimenov, D. Y., Giasin, K., Mikolajczyk, T., & Sharma, S. (2020). Modeling of cutting parameters and tool geometry for multi-criteria optimization of surface roughness and vibration via response surface methodology in turning of AISI 5140 steel. Materials, 13(19), 4242.
  • Kuntoğlu, M., Aslan, A., & Sağlam, H. (2021). AISI 5140 Çeliğinin tornalanması esnasında yaklaşma açısı ve kesme parametrelerinin işlenebilirliğe etkisinin incelenmesi. Politeknik Dergisi, 1-1.
  • Kuntoğlu, M., Aslan, A., Sağlam, H., Pimenov, D. Y., Giasin, K., & Mikolajczyk, T. (2020). Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitoring system in turning of AISI 5140. Sensors, 20(16), 4377.
  • Kuntoğlu, M., & Sağlam, H. (2021). Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Measurement, 173, 108582.
  • Li, H.-Y., He, H.-B., Han, W.-Q., Yang, J., Gu, T., Li, Y.-m., & Lyu, S.-K. (2015). A study on cutting and tribology performances of TiN and TiAlN coated tools. International Journal of Precision Engineering and Manufacturing, 16, 781-786.
  • Mia, M., Singh, G., Gupta, M. K., & Sharma, V. S. (2018). Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precision Engineering, 53, 289-299.
  • Pimenov, D. Y., Mia, M., Gupta, M. K., Machado, Á. R., Pintaude, G., Unune, D. R., . . . Wojciechowski, S. (2022). Resource saving by optimization and machining environments for sustainable manufacturing: A review and future prospects. Renewable and Sustainable Energy Reviews, 166, 112660.
  • Rüstem, B., Süleyman, Y., & Süleyman, N. (2021). Optimization of Machinability Parameters of S960QL Structural Steel by Finite Elements and Taguchi Method. Paper presented at the Proceedings of the International Conference on Engineering Technologies (ICENTE’21)(Tam Metin Bildiri/Sözlü Sunum)(Yayın No: 7301857), Konya, Turkey.
  • Santos, M. C., Machado, A. R., Sales, W. F., Barrozo, M. A., & Ezugwu, E. O. (2016). Machining of aluminum alloys: a review. The International Journal of Advanced Manufacturing Technology, 86, 3067-3080.
  • Sarıkaya, M., Gupta, M. K., Tomaz, I., Pimenov, D. Y., Kuntoğlu, M., Khanna, N., . . . Krolczyk, G. M. (2021). A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys. CIRP Journal of Manufacturing Science and Technology, 35, 624-658.
  • Usca, Ü. A., Uzun, M., Şap, S., Giasin, K., Pimenov, D. Y., & Prakash, C. (2022). Determination of machinability metrics of AISI 5140 steel for gear manufacturing using different cooling/lubrication conditions. journal of materials research and technology, 21, 893-904.
  • Zhang, Y., Cheng, Y., Hu, H., & Yin, Z. (2017). Experimental study on cutting performance of microwave sintered Ti (C, N)/Al2O3 cermet tool in the dry machining of hardened steel. The International Journal of Advanced Manufacturing Technology, 91, 3933-3941.

Mühendislik uygulamalarında işlenebilirliği artırmak için AISI 5140 temperlenmiş çeliğin finiş tornalanması: Kuru kesmeyle deneysel bir yaklaşım

Yıl 2023, , 1 - 10, 14.06.2024
https://doi.org/10.57244/dfbd.1392858

Öz

Bu çalışmada, yüksek mukavemet ve tokluk özellikleri nedeniyle otomotiv, tarım ve inşaat sektörlerinde yaygın olarak kullanılan AISI 5140 temperli çeliğin en iyi son tornalama koşulları araştırılmaktadır. Çelik, yüzey sertleştirmeye uygundur ve bu da onu çeşitli mühendislik uygulamalarında mükemmel bir seçenek haline getirir. Ancak bu malzeme ile ilgili az sayıda çalışma mevcut olup, parçaların çalışma alanına hazırlanması açısından son derece kritik olan finiş tornalama işleminde herhangi bir kağıt görülmemektedir. Bu nedenle bu çalışma, AISI 5140 çeliğinin kuru kesimi sırasında ilerleme hızı, kesme hızı ve kesme derinliği parametrelerinin, kesme kuvveti ve kesme sıcaklıklarının yanı sıra iş parçasının pürüzlülüğü üzerindeki etkilerine odaklanmaktadır. Deneylerin sonuçları istatistiksel analiz ve Taguchi'nin optimizasyon yaklaşımıyla değerlendirildi. Buna göre kesme hızı, yüzey pürüzlülüğü, kesme kuvveti ve sıcaklık gibi tüm yanıt parametrelerinde sırasıyla %92,6, %61,6 ve %91,6 katkı oranıyla baskın parametredir. Maksimum yüzey kalitesi için en yüksek kesme derinliği (0,3 mm) ve kesme hızı (200 m/dak) ile en düşük ilerleme hızı (0,15 mm/dev) kullanılmalıdır. Böyle bir yaklaşımın, temperlenmiş çeliklerin farklı mühendislik disiplinlerinde kullanıldığı pratik uygulamalar için yol gösterici olması beklenmektedir.

Kaynakça

  • Arrazola, P. J., Özel, T., Umbrello, D., Davies, M., & Jawahir, I. S. (2013). Recent advances in modelling of metal machining processes. Cirp Annals, 62(2), 695-718.
  • Aslan, A. (2020). Optimization and analysis of process parameters for flank wear, cutting forces and vibration in turning of AISI 5140: A comprehensive study. Measurement, 163, 107959.
  • Bican, O., Bayca, S. U., Ocak-Araz, S., Yamanel, B., & Tanis, N. A. (2020). Effects of the boriding process and of quenching and tempering after boriding on the microstructure, hardness and wear of AISI 5140 steel. Surface Review and Letters, 27(06), 1950157.
  • Binali, R., Demirpolat, H., Kuntoğlu, M., & Sağlam, H. (2023). Machinability investigations based on tool wear, surface roughness, cutting temperature, chip morphology and material removal rate during dry and MQL-assisted milling of Nimax mold steel. Lubricants, 11(3), 101.
  • Ebrahimi, A., & Moshksar, M. (2009). Evaluation of machinability in turning of microalloyed and quenched-tempered steels: Tool wear, statistical analysis, chip morphology. Journal of materials processing technology, 209(2), 910-921.
  • Grzesik, W. (2008). Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools. Wear, 265(3-4), 327-335.
  • Huang, X., Ren, Y., Li, T., Zhou, Z., & Zhang, G. (2018). Influence of minimum quantity lubrication parameters on grind-hardening process. Materials and Manufacturing Processes, 33(1), 69-76.
  • Kahraman, F. (2017). Optimization of cutting parameters for surface roughness in turning of studs manufactured from AISI 5140 steel using the Taguchi method. Materials Testing, 59(1), 77-80.
  • Karakan, M., Alsaran, A., & Çelik, A. (2002). Effects of various gas mixtures on plasma nitriding behavior of AISI 5140 steel. Materials Characterization, 49(3), 241-246.
  • Kuntoğlu, M., Acar, O., Gupta, M. K., Sağlam, H., Sarikaya, M., Giasin, K., & Pimenov, D. Y. (2021). Parametric optimization for cutting forces and material removal rate in the turning of AISI 5140. Machines, 9(5), 90.
  • Kuntoğlu, M., Aslan, A., Pimenov, D. Y., Giasin, K., Mikolajczyk, T., & Sharma, S. (2020). Modeling of cutting parameters and tool geometry for multi-criteria optimization of surface roughness and vibration via response surface methodology in turning of AISI 5140 steel. Materials, 13(19), 4242.
  • Kuntoğlu, M., Aslan, A., & Sağlam, H. (2021). AISI 5140 Çeliğinin tornalanması esnasında yaklaşma açısı ve kesme parametrelerinin işlenebilirliğe etkisinin incelenmesi. Politeknik Dergisi, 1-1.
  • Kuntoğlu, M., Aslan, A., Sağlam, H., Pimenov, D. Y., Giasin, K., & Mikolajczyk, T. (2020). Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitoring system in turning of AISI 5140. Sensors, 20(16), 4377.
  • Kuntoğlu, M., & Sağlam, H. (2021). Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Measurement, 173, 108582.
  • Li, H.-Y., He, H.-B., Han, W.-Q., Yang, J., Gu, T., Li, Y.-m., & Lyu, S.-K. (2015). A study on cutting and tribology performances of TiN and TiAlN coated tools. International Journal of Precision Engineering and Manufacturing, 16, 781-786.
  • Mia, M., Singh, G., Gupta, M. K., & Sharma, V. S. (2018). Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precision Engineering, 53, 289-299.
  • Pimenov, D. Y., Mia, M., Gupta, M. K., Machado, Á. R., Pintaude, G., Unune, D. R., . . . Wojciechowski, S. (2022). Resource saving by optimization and machining environments for sustainable manufacturing: A review and future prospects. Renewable and Sustainable Energy Reviews, 166, 112660.
  • Rüstem, B., Süleyman, Y., & Süleyman, N. (2021). Optimization of Machinability Parameters of S960QL Structural Steel by Finite Elements and Taguchi Method. Paper presented at the Proceedings of the International Conference on Engineering Technologies (ICENTE’21)(Tam Metin Bildiri/Sözlü Sunum)(Yayın No: 7301857), Konya, Turkey.
  • Santos, M. C., Machado, A. R., Sales, W. F., Barrozo, M. A., & Ezugwu, E. O. (2016). Machining of aluminum alloys: a review. The International Journal of Advanced Manufacturing Technology, 86, 3067-3080.
  • Sarıkaya, M., Gupta, M. K., Tomaz, I., Pimenov, D. Y., Kuntoğlu, M., Khanna, N., . . . Krolczyk, G. M. (2021). A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys. CIRP Journal of Manufacturing Science and Technology, 35, 624-658.
  • Usca, Ü. A., Uzun, M., Şap, S., Giasin, K., Pimenov, D. Y., & Prakash, C. (2022). Determination of machinability metrics of AISI 5140 steel for gear manufacturing using different cooling/lubrication conditions. journal of materials research and technology, 21, 893-904.
  • Zhang, Y., Cheng, Y., Hu, H., & Yin, Z. (2017). Experimental study on cutting performance of microwave sintered Ti (C, N)/Al2O3 cermet tool in the dry machining of hardened steel. The International Journal of Advanced Manufacturing Technology, 91, 3933-3941.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İmalat Yönetimi, Üretimde Optimizasyon
Bölüm Makaleler
Yazarlar

Ali Çetin Yalçın 0009-0002-7620-5814

Fırat Şen 0009-0002-7845-0303

Barış Divleli 0009-0002-9584-4232

Tuncay Küçükçolak 0009-0007-4998-701X

Cihan Menşan 0009-0009-3647-2185

Rüstem Binali 0000-0003-0775-3817

Erken Görünüm Tarihi 25 Nisan 2024
Yayımlanma Tarihi 14 Haziran 2024
Gönderilme Tarihi 21 Kasım 2023
Kabul Tarihi 16 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yalçın, A. Ç., Şen, F., Divleli, B., Küçükçolak, T., vd. (2024). Finish turning of AISI 5140 tempered steel to improve machinability for engineering applications: An experimental approach with dry cutting. Doğu Fen Bilimleri Dergisi, 6(2), 1-10. https://doi.org/10.57244/dfbd.1392858