BibTex RIS Kaynak Göster

Türkiye’ye Gelen Yabancı Turist Sayısını Kestirmek için Sağlam Kısmi En Küçük Kareler Regresyon Yöntemlerinin RSIMPLS, PRM Sağlam Temel Bileşenler Regresyon Yöntemi ile Karşılaştırılması

Yıl 2019, Cilt: 20 Sayı: 1, 31 - 47, 01.01.2019

Öz

Turizm, Türkiye gibi gelişmekte olan ülkelerin ekonomik kalkınma stratejilerinde anahtar bileşendir. Türkiye’nin 1986 - 2013 dönemi için, gelen yabancı turist sayısını etkileyen altı faktörün dâhil olduğu veri kümesi incelenir. Bu çalışmanın amacı, veri kümesinde hem çoklu bağlantı hem de uç değer olduğunda Türkiye’ye gelen yabancı turist sayısını bir sağlam Temel Bileşenler Regresyon yöntemi: RPCR, iki sağlam Kısmi En Küçük Kareler Regresyon yöntemleri: RSIMPLS ve Kısmi Sağlam MRegresyon PRM kullanarak modellemektir. Böylece, yabancı turist sayısının en iyi kestirimlerini veren en iyi model seçilir ve en önemli faktörler belirlenir.

Kaynakça

  • Alpu, O., Samkar, H. and Altan, E. (2010). Saglam ridge regresyon analizi ve bir uygulama. Dokuz Eylul Universitesi İktisadi ve İdari Bilimler Fakultesi Dergisi, 25 (2), 137-148.
  • Aslan, A., Kaplan, M. and Kula, F. (2008). International tourism demand for Turkey: a muenchen.de/10601/1/MPRA_paper_10601.pdf. data approach. Avaliable: https://mpra.ub.uni
  • Daszykowski, M., Serneels, S., Kaczmarek, K.., Van Espen, P., Croux, C. and Walczak, B. (2007). TOMCAT: A MATLAB toolbox for multivariate calibration techniques. Chemometrics and Intelligent Laboratory Systems, 85, 269–277.
  • Engelen, S., Hubert, M., Vanden Branden, K. and Verboven, S. (2004). Robust PCR and robust PLSR: a comparative study. M. Hubert, G. Pison, A. Struyf and S. V. Aelst (Ed.). In Theory and Applications of Recent Robust Methods (pp. 105–117). Birkhäuser; Basel.
  • Hubert, M. and Verboven, S. (2003). A robust PCR method for high-dimensional regressors. Journal of Chemometrics, 17, 438–452.
  • Hubert, M. and Vanden Branden, K. (2003). Robust methods for partial least squares regression. Journal of Chemometrics, 17, 537-549.
  • Ispir, D., Ergul, B. and Yavuz Altın, A. (2015). Examining the ridge regression analysis of the number of foreign tourists coming to Turkey, in Proceedings of the 2nd International Congress of Tourism & Management Researches (pp. 242).
  • Liebmann, B. Filzmoser, P. and Varmuza, K. (2010). Robust and classical PLS regression compared. Journal of Chemometrics, 24 (3-4), 111-120.
  • Polat, E. and Turkan, S. (2016). The comparison of classical and robust biased regression methods for determining unemployment rate in Turkey: period of 1985-2012. Journal of Data Science, 14 (4), 739-768.
  • Samkar, H., Alpu, O. and Altan, E. (2011). Ridge regresyonda M tahmin edicilerinin kullanımı üzerine bir uygulama. Dokuz Eylul Universitesi İktisadi ve İdari Bilimler Fakultesi Dergisi, 26 (1), 67-77.
  • Serneels, S., Croux, C., Filzmoser, P. and Van Espen, P. J. (2005). Partial robust M- regression. Chemometrics and Intelligent Laboratory Systems, 79, pp. 55-64.
  • Verboven, S. and Hubert, M. (2005). LIBRA: a MATLAB library for robust analysis. Chemometrics and Intelligent Laboratory System, 75, 127–136.
  • Zhang, Y., Qu, H. and Tavitiyaman, P. (2009). The determinants of the travel demand on international tourist arrivals to Thailand. Asia Pacific Journal of Tourism Research, 14 (1), 77-92.

The Comparison of Robust Partial Least Squares Regression Methods RSIMPLS, PRM with Robust Principal Component Regression for Predicting Tourist Arrivals to Turkey

Yıl 2019, Cilt: 20 Sayı: 1, 31 - 47, 01.01.2019

Öz

Tourism is one of the most important component in the economic development strategy of many developing countries such as Turkey. The annual data set of Turkey 1986 - 2013 , including the six factors affecting the tourist arrivals, is examined. The aim of this study is modelling the tourist arrivals to Turkey in cases of both multicollinearity and outlier existence in the data set by using a robust Principal Component Regression method: RPCR, two robust Partial Least Squares Regression methods: RSIMPLS and Partial Robust M-Regression PRM . Hence, the best model giving the best predictions of tourist arrivals is selected and the most important factors are determined.

Kaynakça

  • Alpu, O., Samkar, H. and Altan, E. (2010). Saglam ridge regresyon analizi ve bir uygulama. Dokuz Eylul Universitesi İktisadi ve İdari Bilimler Fakultesi Dergisi, 25 (2), 137-148.
  • Aslan, A., Kaplan, M. and Kula, F. (2008). International tourism demand for Turkey: a muenchen.de/10601/1/MPRA_paper_10601.pdf. data approach. Avaliable: https://mpra.ub.uni
  • Daszykowski, M., Serneels, S., Kaczmarek, K.., Van Espen, P., Croux, C. and Walczak, B. (2007). TOMCAT: A MATLAB toolbox for multivariate calibration techniques. Chemometrics and Intelligent Laboratory Systems, 85, 269–277.
  • Engelen, S., Hubert, M., Vanden Branden, K. and Verboven, S. (2004). Robust PCR and robust PLSR: a comparative study. M. Hubert, G. Pison, A. Struyf and S. V. Aelst (Ed.). In Theory and Applications of Recent Robust Methods (pp. 105–117). Birkhäuser; Basel.
  • Hubert, M. and Verboven, S. (2003). A robust PCR method for high-dimensional regressors. Journal of Chemometrics, 17, 438–452.
  • Hubert, M. and Vanden Branden, K. (2003). Robust methods for partial least squares regression. Journal of Chemometrics, 17, 537-549.
  • Ispir, D., Ergul, B. and Yavuz Altın, A. (2015). Examining the ridge regression analysis of the number of foreign tourists coming to Turkey, in Proceedings of the 2nd International Congress of Tourism & Management Researches (pp. 242).
  • Liebmann, B. Filzmoser, P. and Varmuza, K. (2010). Robust and classical PLS regression compared. Journal of Chemometrics, 24 (3-4), 111-120.
  • Polat, E. and Turkan, S. (2016). The comparison of classical and robust biased regression methods for determining unemployment rate in Turkey: period of 1985-2012. Journal of Data Science, 14 (4), 739-768.
  • Samkar, H., Alpu, O. and Altan, E. (2011). Ridge regresyonda M tahmin edicilerinin kullanımı üzerine bir uygulama. Dokuz Eylul Universitesi İktisadi ve İdari Bilimler Fakultesi Dergisi, 26 (1), 67-77.
  • Serneels, S., Croux, C., Filzmoser, P. and Van Espen, P. J. (2005). Partial robust M- regression. Chemometrics and Intelligent Laboratory Systems, 79, pp. 55-64.
  • Verboven, S. and Hubert, M. (2005). LIBRA: a MATLAB library for robust analysis. Chemometrics and Intelligent Laboratory System, 75, 127–136.
  • Zhang, Y., Qu, H. and Tavitiyaman, P. (2009). The determinants of the travel demand on international tourist arrivals to Thailand. Asia Pacific Journal of Tourism Research, 14 (1), 77-92.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Esra Polat Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 20 Sayı: 1

Kaynak Göster

APA Polat, E. (2019). The Comparison of Robust Partial Least Squares Regression Methods RSIMPLS, PRM with Robust Principal Component Regression for Predicting Tourist Arrivals to Turkey. Doğuş Üniversitesi Dergisi, 20(1), 31-47.