Araştırma Makalesi
BibTex RIS Kaynak Göster

Moment Tensor Solutions of November 17, 2021 Central (Duzce) Earthquake (Mw5.0) and its Aftershocks (Mw4.3 and Mw3.9) and Coulomb Stress Analysis of the Mainshock

Yıl 2024, , 419 - 438, 26.01.2024
https://doi.org/10.29130/dubited.1112340

Öz

In this study, the source mechanism solutions of the November 17, 2021 Central (Düzce) earthquake occurred at 15.40 local time (LT) with magnitude Mw5.0 and its aftershocks occurred with magnitudes Mw4.3 (LT 15.57) and Mw3.9 (LT 21.35) were found by using the moment tensor inversion (MT) method. It was determined that the mainshock occurred on the NE-SW oriented strike-slip fracture. The mainshock source parameter solution obtained in this study was compared with the fault solution obtained from earthquake data centers and it was seen that the result was compatible. It was observed that the source mechanism of the Mw4.3 aftershock was reverse faulting with a strike-slip component, and the Mw3.9 aftershock has a NE-SW oriented strike-slip faulting mechanism. The Coulomb stress variation caused by the mainshock was calculated and the variation of the stress at a depth of 15 km was examined by taking cross-sections in N-S, NW-SE and NE-SW directions. Accordingly, it was determined that the mainshock and its aftershocks reduced the stress in the NE-SW direction, but loaded maximum of 1 bar on the nearby faults in the N-S and WNW-ESE directions. 23 November 2022 Gölyaka (Düzce) earthquake (Mw5.9) occurred in the region where the stress was indicated to increase. This proves the accuracy of the results in the study.

Kaynakça

  • [1] D.P. McKenzie, “Active tectonics of the Mediterranean region”, Geophysical Journal Royal Astronomical Society, 30, 109-185, 1972.
  • [2] Ö. Alptekin, “Focal Mechanisms of Earthquakes in Western Turkey and Their Tectonic Implications” Ph.D. thesis, New Mexico Instute of Mining and Teach., Socorro, New Mexico, USA, 1973.
  • [3] , A.M.C. Şengör, “The North Anatolian Transform Fault: its age, offset and tectonic significance”, Journal of Geol. Soc. London, 136:269–82, 1979.
  • [4] A.M.C. Şengör, N. Görür, F. Şaroğlu, “Strike slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike-slip Deformation, Basin Formation, and Sedimentation”, Soc. Econ. Paleontol. Miner. Spec. Publ. 37 (in honor of J.C. Crowell), ed. KT Biddle, N Christie-Blick, pp. 227–64, 1985.
  • [5] R.E. Reilinger, S.C. McCLusky, M.B. Oral, R.W. King, M.N. Toksöz, “Global Positioning System measurements of present-day crustal movements in the Arabia-Africa- Eurasia plate collision zone”, J. Geophys. Res., 102:9983–99, 1997.
  • [6] S. McClusky, S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Prilepin, R. Reilinger, I. Sanli, H. Seeger, H., A. Tealeb, M.N. Toksöz, G. Veis, “GPS constraints on plate kinematics and dynamics in the Eastern Mediterranean and Caucasus”, J. Geophys. Res., 105, 5695-5719, 2000.
  • [7] L. Gülen, A. Pınar, D. Kalafat, N. Özel, G. Horasan, M. Yılmazer, A.M. Işıkara, “Surface Fault Breaks, Aftershock Distribution, and Rupture Process of the August 17, 1999 Izmit, Turkey Earthquake”, Bulletin of the Society of America, 92, 230-244, 2002.
  • [8] A. Allen, J. Jackson, R. Walker, “Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates”, Tectonics, 2 3, TC2008, doi:10.1029/2003TC001530, 2004.
  • [9] R. Reilinger, S. McClusky, P. Vernant, S. Lawrence, S. Ergintav, R. Çakmak, M. Nadariya, “GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions” Journal of Geophysical Research: Solid Earth, 111(B5), 2006.
  • [10] H. Yalçın, L. Gülen, Z. Çağnan, D. Kalafat, “Kıbrıs ve Yakın Çevresinin Depremselliği”, 65. Jeoloji Kurultayı, Bildiri Özetleri Kitabı, s 4-5. Ankara, 2012.
  • [11] A. Barka, “Slip distribution along the North Anatolian Fault associated with large earthquakes of the period 1939 to 1967”, Bull. Seis. Soc. Amer., 86, 1238-1254, 1996.
  • [12] A. Barka, and K. Kadinsky-Cade, “Strikeslip fault geometry in Turkey and its influence on earthquake activity”, Tectonics, 7, 663-684, 1988.
  • [13] A. Barka, H.S. Akyüz, E. Altunel, G. Sunal, Z. Çakır, “The surface rupture and slip distribution of the 17 August 1999 İzmit earthquake (M 7.4), North Anatolian Fault”, Bulletin of the Seismological Society of America, 92:43–60, 2002.
  • [14] R.M. Langridge, H.D. Stenner, T.E. Fumal, S.A. Christofferson, T.K. Rockwell, R.D Hartleb, J. Bachhuber,& A.A. Barka, “Geometry, slip distribution, and kinematics of surface rupture on the Sakarya Fault segment during the 17 August 1999 İzmit, Turkey, earthquake”, Bulletin of the Seismological Society of America, 92, 107–125, 2002.
  • [15] R.D. Hartleb, J.F. Dolan, H.S. Akyüz, T. E. Dawson, A.Z. Tucker, B. Yerli, T.K. Rockwell, E. Toraman, E., Z. Çakır, Z., A. Dikbaş, A., and E. Altunel, “Surface rupture and slip distribution along the Karadere segment of the 12 November 1999 Düzce, Turkey, earthquakes”, Bulletin of Seismological Society of America, 92, 67-78, 2002.
  • [16] W.R. Lettis, J. Bachhuber, R.C. Witter, C. Brankman, E. Randolph, A.A. Barka, W.D. Page, A. Kaya, “Influence of releasing step-overs on surface fault rupture and fault segmentation: examples from the 17 August 1999 İzmit earthquake on the North Anatolian fault, Turkey,” Bulletin of Seismological Society of America, 92, 19–42, 2002.
  • [17] E. Herece, E. Akay, “Atlas of North Anatolian Fault (NAF). Ankara, Turkey: General Directorate of Mineral Research and Exploration”, Special Publication Series-2, 61: 13, 2003.
  • [18] R. Bürgmann, M.E. Ayhan, E.J. Fielding, T.J. Wright, S. McClusky, B. Aktuğ, C. Demir, O. Lenk, A. Türkezer, “Deformation during the 12 November 1999 Düzce, Turkey, earthquake, from GPS and InSAR data” Bulletin of Seismological Society of America, 92, 161–171, 2002.
  • [19] Ö. Emre, T.Y. Duman, Y. Awata, T. Yoshioka, A. Doğan, “17 Ağustos 1999 Doğu Marmara depremi yüzey kırığı: Eş zamanlı üçlü faylanma örneği” ATAG-3, Bildiri Özleri Kitabı, s. 4, 1999.
  • [20] T. Komut, Y. Ikeda, “17/08/1999 Kocaeli depremi yüzey kırığının arazi incelemesi”. ATAG-3, Bildiri Özleri Kitabı, sayfa 11, Sivas, 1999.
  • [21] Ö. Emre, T.Y. Duman, S. Özalp, H. Elmacı, Ş. Olgun, F. Şaroğlu, “1/1.250.000 Ölçekli Türkiye Diri Fay Haritası”, Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayınlar Serisi, Ankara, Türkiye, 2013.
  • [22] B.Ü. Kandilli Rasathanesi ve DAE. Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi, 17 Kasım 2021 Yayakbaşı-Düzce Depremi, Basın Bülteni, 2021.
  • [23] F.F. Pollitz, “Postseismic relaxation theory on the spherical earth”, Bulletin of the Seismological Soceity of America, 82, 422–453, 1992.
  • [24] F.F. Pollitz, “Gravitational viscoelastic postseismic relaxation on a layered spherical Earth”, Journal of Geophysical Research: Solid Earth, 102(B8), 17921-17941, 1997.
  • [25] M. Utkucu, F. Uzunca, E. Doğan, Sakarya Üniversitesi Afet Yönetim Uygulama ve Araştırma Merkezi, Jeofizik Mühendisliği Bölümü, 17 Kasım 2021 Yayakbaşı (Düzce) Depremi Ön Değerlendirme Raporu, Rapor No: 2021-1, Kasım 2021.
  • [26] J. L. Hardebeck, and P. M. Shearer, “Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes”, Bulletin of the Seismological Soceity of America, 93, 2434-2444, 2003.
  • [27] H. Kanamori, and J. W. Given, “Use of long-period surface waves for rapid determination of earthquake source parameters: 2. Preliminary determination of source mechanisms of large earthquakes (Ms > 6.5) in 1980”, Physics Earth Planetanery Interiors, 30, 260-268, 1982.
  • [28] A. M. Dziewonski, and J. H. Woodhouse , “An experiment in systematic study of global seismicity: centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981”, Journal of Geophysical Research, 88, 3247-3271, 1983.
  • [29] A. M., Dziewonski, A. Friedman, D. Giardini, and J. H. Woodhouse, “Global seismicity of 1982: centroid-moment tensor solutions for 308 earthquakes”, Physics Earth Planetary Interiors, 33, 76- 90, 1983.
  • [30] A. M. Dziewonski, J. E. Franzen, and J. H. Woodhouse, “Centroid-moment tensor solutions for July-September 1983”, Physics Earth Planetary Interiors, 34, 1-8, 1984.
  • [31] D. Giardini, “Systematic analysis of deep seismicity: 200 centroid-moment tensor solutions for earthquakes between 1977 and 1980”, Geophysical Journal of the Royal Astronomical Society, 77, 883-914, 1984.
  • [32] G. Ekström, and A. M. Dziewonski, “Centroid moment tensor solutions for 35 earthquakes in Western North America (1977-1983)”, Bulletin of the Seismological Soceity of America, 75, 23-39, 1985.
  • [33] A. M. Dziewonski, G. Ekström, J. E. Franzen, and J. H. Woodhouse, “Global seismicity of 1979: centroid-moment tensor solutions for 524 earthquakes”, Physics Earth Planetanery Interiors, 48, 18- 46, 1987.
  • [34] G. Ekström, A. M. Dziewonski, and J. H. Woodhouse, “Centroid-moment tensor solutions for the 51 IASPEI selected earthquakes, 1980-1984”, Physics Earth Planetanery Interiors, 47, 62- 66, 1987.
  • [35] R.S. Stein, A.A. Barka A.A., and J.H. Dieterich, “Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering”, Geophysical Journal International, 128, 594-604, 1997.
  • [36] G. C. P. King, R. S. Stein, and J. Lin, “Static stress changes and thetriggering of earthquakes”, Bulletin of the Seismological Society of America, 84, 935–953, 1994.
  • [37] G. C. P. King, A. Hubert-Ferrari, S. S. Nalbant, B. Meyer, R. Armijo, and D. Bowman, “Coulomb stress interactions and the 17 August 1999, Izmit, Turkey earthquake”, Comptes Rendus de l'Académie des Sciences, 333, 557–570, 2001.
  • [38] A. Hubert, G.C.P. King, A. Armijo, B. Meyer and D. Papanastassiou, “Fault re-activation, stress interaction and rupture propagation of the 1981 Corinth earthquake sequence”, Earth Planetary Science Letter, 142, 573-585, 1996.
  • [39] S. S. Nalbant, A. Hubert, and G. C. P. King, “Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea”, Journal of Geophysical Research, 103, 24,469–24,486, 1998.
  • [40] A. Hubert-Ferrari, A.A. Barka, E. Jacques, S.S. Nalbant, B. Meyer, R. Armijo, P. Topponnier, and G.C.P. King, “Seismic hazard in the Marmara Sea region following the 17 August 1999 İzmit earthquake”, Nature, 404, 269-273, 2000.
  • [41] G.C.P. King and M. Cocco, “Fault interaction by elastic stress changes: new clues from earthquake sequences”, Advances in Geophysics, 44, 1–38, 2000.
  • [42] 1 S. Das and C. Scholz, “Theory of Time-Dependent Rupture in the Earth”, Journal of Geophysical Research, 86, 6039-6051, 1981.
  • [43] R. Stein, and M. Liwoski, “The 1979 Homestead Valley earthquake sequence, California: control of aftershocks and postseismic deformation”, Journal of Geophysical Research, 88, 6477-6490, 1983.
  • [44] R.S. Stein, “The role of stress transfer in earthquake occurrence”, Nature, Vol. 402, 605–609, 1999.
  • [45] M. Utkucu, A. Pınar, Ö. Alptekin, “Uzak alan P dalga Şekillerinin Sonlu Fay Ters Çözümünden 22 Mayıs 1971 Bingöl Depremi Kırılma Sürecinin İncelenmesi”, Yerbilimleri, 28, 65-79, 2003.
  • [46] S. Toda, R. Stein, “Toggling of Seismicity by the 1997 Kagoshima Earthquake Couplet: A Demonstration of Time-Dependent Stress Transfer”, Journal of Geophysical Research, Vol. 108, No. B12, 2567, 2003.
  • [47] T. Parsons, “Recalculated probability of M ≥7 earthquakes beneath the Sea of Marmara, Turkey”, Journal of Geophysical Research, Vol. 109, B05304, 2004.
  • [48] S. Toda, R.S. Stein, K.R. Dinger, and S.B. Bozkurt, “Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer”, Journal of Geophysical Research, Vol. 110, B05S16, 2005.
  • [49] İ. Seymen, “Kelkit Vadisi Kesiminde Kuzey Anadolu Fay Zonunun Tektonik Özelliği: Dr. Eng.”, İstanbul Tek. Univ., Maden Fak., XIX+192 pp.+2 foldout maps, 1975.
  • [50] Y. Tatar, “Kuzey Anadolu Fay Zonu’nun Erzincan-Refahiye arasındaki bölümü üzerinde tektonik incelemeler”, Yerbilimleri Dergisi, 5(3/4), 201-236, 1978.
  • [51] A.A. Barka, “Seismo-tectonic aspects of the North Anatolian fault zone”, Ph.D. thesis, University of Bristol, England, 335 pp, 1981.
  • [52] A.A. Barka, “The North Anatolian Fault zone”, Annales Tectonicae, 6:164–95, 1992.
  • [53] A.A. Barka, P.L. Hancock, “Neotectonic deformation patterns in the convex-northwards arc of the North Anatolian fault zone”. Geological Society, London, Special Publications, 17(1), 763- 774, 1984.
  • [54] F. Şaroğlu, “Doğu Anadolu’nun Neotektonik Dönemde Jeolojik ve Yapısal Evrimi”, Ph.D thesis. İstanbul Univ., Fen Bilim. Enst., İstanbul. 240 pp.+7 foldouts, 1985.
  • [55] F. Şaroğlu, “Age and offset of the North Anatolian Fault”, METU J. Appl. Sci. 21:65-79, 1988.
  • [56] A. Koçyiğit, “Basic geological characteristics and total offset of the North Anatolian Fault zone in Suşehri area, NE Turkey”. METU Pure and Applied Sciences, 22, 43-68, 1988.
  • [57] A. Koçyiğit, “Suşehri Basin: An Active Faultwedge Basin on the North Anatolian Fault Zone, Turkey”, Tectonophysics, 167, 11–29, 1989.
  • [58] A. Koçyiğit, “Tectonic setting of the Gölova basin: total offset of the North Anatolian Fault Zone, E. Pontide, Turkey”. Ann. Tectonicae, 4, 155-170, 1990.
  • [59] V. Toprak, “Neotectonic characteristics of the North Anatolian Fault Zone between Koyulhisar and Suşehri (NE Turkey)” METU J. Pure Ap. Sci., 21:155-66, 1988.
  • [60] C. Yaltırak, “Ganos Fay Sistemi’nin tektonik tarihi”. Türk. Petrol Jeol. Derneği, Bül. 8:137–56, 1996.
  • [61] J.D.A. Piper, O. Tatar, H. Gürsoy, “Deformational behaviour of continental lithosphere deduced from block rotations across the North Anatolian Fault Zone in Turkey.” Earth Planet. Sci. Lett. 150:191–203, 1997.
  • [62] O. Tüysüz, E. Yiğitbaş, T. Genç, U. Tarı, “Batı Karadeniz Bölgesinin Tektonik Birliklerinin Ayırdı ve 1: 500.000 Ölçekli Jeoloji Haritasının Hazırlanması [Tectonic Units of Western Black Sea Region and Their Geological Mapping at 1: 500.000 Scale]”, TÜBİTAK Project Report YDABÇAG-17, 1998.
  • [63] R. Armijo, B. Meyer, A. Hubert-Ferrari, A.A. Barka, “Westward propagation of North Anatolian Fault into the Northern Aegean: timing and kinematics”. Geology, 27:267–70, 1999.
  • [64] A.A. Barka, H.S. Akyüz, H.A. Cohen, F. Watchorn, “Tectonic evolution of the Niksar and Taşova-Erbaa pull-apart basins, North Anatolian Fault Zone: their significance for the motion of the Anatolian Block”. Tectonophysics, 322:243–64, 2000.
  • [65] R. Westaway, “Present-day kinematics of the Middle East and eastern Mediterranean”. Journal of Geophysical Research: Solid Earth, 99(B6), 12071-12090, 1994.
  • [66] Y. Tatar, “Düzce İl Gelişme Planı. Çevre ve Mekansal Gelişme Sektörü Raporu, Düzce”, 103 s, 2003.
  • [67] F. Şaroğlu, Ö. Emre, A. Boray, “Türkiye’nin Diri Fayları ve Depremsellikleri” MTA Genel Müdürlüğü, Rapor No: 8174, Ankara, 394s (yayımlanmamış), 1987.
  • [68] F. Şaroğlu, Ö. Emre, İ. Kuşçu, Türkiye Diri Fay Haritası. MTA Genel Müdürlüğü, Ankara, 1992.
  • [69] E. Alsan, L. Tezuçan, and M. Bath, “An earthquake catalogue for Turkey for the interval 1913-1970”, Kandilli Observatory Seismological Department Çengelköy-İstanbul, Turkey and Seismological Institute Box, 517, S-751 20 Uppsala, Sweden. 1975.
  • [70] E. Ayhan, E. Alsan, N. Sancaklı, S.B. Üçer, “Türkiye ve Dolayları Deprem Kataloğu 1881- 1980”, Boğaziçi Üniversitesi Yayınları, 1980.
  • [71] N.N. Ambraseys, C.F. Finkel, “Long-term seismicity of İstanbul and of the Marmara Sea region”. Terra Nova 3, 527–539, 1991.
  • [72] N.N. Ambraseys, C.F. Finkel, “The seismicity of Turkey and Adjacent Areas, a Historical Review”, 1500- 1800, Eren yayıncılık, İstanbul, 1995.
  • [73] United States Geological Survey web page, https://earthquake.usgs.gov/earthquakes/search/ Erişim Tarihi: 22.11.2021.
  • [74] R.B. Herrmann, “Computer programs in seismology: An evolving tool for instruction and research”, Seismological Research. Letters., 84, 1081-1088, doi:10.1785/0220110096, 2013.
  • [75] T. Lay, T. C. Wallace, Modern Global Seismology, Academic Press, San Diego, 521pp, 1995
  • [76] C.A. Langston, “Source inversion of seismic waveforms: the Koyna, India, earthquakes of September 13, 1967”. Bulletin of the Seismological Society of America, 71:1-24, 1981.
  • [77] S. Toda, R.S. Stein, V. Sevilgen, and J. Lin, Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide: U.S. Geological Survey Open-File Report 2011-1060, 63 p., available at http://pubs.usgs.gov/of/2011/1060/, 2011.
  • [78] Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, http://www.koeri.boun.edu.tr/sismo/2/earthquake-catalog/
  • [79] İzmit Rapor AFAD Deprem Dairesi Başkanlığı. [Çevrimiçi]. Erişim Adresi: https://deprem.afad.gov.tr/depremdetay?eventID=246572. Erişim Tarihi: 22.11.2021.
  • [80] Y. Li, L. Huang, R. Ding, S. Yang, L. Liu, S. Zhang and H. Liu, “Coulomb stress changes associated with the M7.3 Maduo earthquake and implications for seismic hazards”, Natural Hazards Research 1, 95-101, 2021.
  • [81] Z. Çakır, A.A. Barka, S. Akyüz, “Coulomb gerilme etkileşimleri ve 1999 Marmara depremleri”, itüdergisi/d mühendislik, Cilt:2, Sayı:4, 99-111, 2003.
  • [82] 17 Kasım 2021 Merkez (Düzce) Mw5.0 Depremine İlişkin Ön Değerlendirme Raporu, AFAD İzmir rapor AFAD Deprem Dairesi Başkanlığı. https://deprem.afad.gov.tr/event-detail/10003, Erişim tarihi: 18 Kasım 2021.
  • [83] 23 Kasım 2022 Gölyaka (Düzce) Mw5.9 Depremine İlişkin Ön Değerlendirme Raporu, AFAD Deprem Dairesi Başkanlığı. https://deprem.afad.gov.tr/event-detail/401390, Erişim tarihi: 23 Kasım 2023.
  • [84] AFAD, T.C. İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı, https://deprem.afad.gov.tr/event-catalog

17 Kasım 2021 Merkez (Düzce) Depremi (Mw5.0) ve Artçı Şoklarının (Mw4.3 ve Mw3.9) Moment Tensör Çözümleri ve Ana Şok Coulomb Gerilme Analizi

Yıl 2024, , 419 - 438, 26.01.2024
https://doi.org/10.29130/dubited.1112340

Öz

Bu çalışmada 17 Kasım 2021 tarihinde yerel saat ile (YS) 15.40’da meydana gelen Mw5.0 büyüklüğündeki Merkez (Düzce) depremi ile Mw4.3 (YS 15.57) ve Mw3.9 (YS 21.35) büyüklüklerindeki iki artçı şokun kaynak mekanizma çözümleri moment tensör ters çözüm (MT) yöntemiyle bulunmuştur. Ana şokun KD-GB uzanımlı doğrultu atımlı kırık üzerinde meydana geldiği tespit edilmiştir. Bu çalışmada elde edilen ana şok moment tensör çözümü, deprem veri merkezlerinden elde edilen fay çözümleri ile karşılaştırılmış ve bulunan sonucun uyumlu olduğu görülmüştür. Mw4.3 büyüklüğündeki artçı şokun kaynak mekanizmasının doğrultu atım bileşeni olan ters faylanma mekanizmasına, Mw3.9 büyüklüğündeki artçı şokun ise KD-GB uzanımlı doğrultu atımlı faylanma mekanizmasına sahip olduğu görülmüştür. Ana şokun neden olduğu Coulomb gerilme değişimi hesaplanmış ve K-G, KB-GD ve KD-GB yönlerinde kesitler alınarak yaklaşık 15 km derinlikteki gerilmenin değişimi incelenmiştir. Buna göre, Merkez (Düzce) depreminin ana şok ve artçı şoklarının bölgedeki KD-GB yönündeki gerilmeyi azalttığı, buna karşın K-G ve BKB-DGD yönündeki yakın faylar üzerine maksimum 1 bar gerilme yüklediği tespit edilmiştir. Gerilmenin arttığına işaret edilen bölgede 23 Kasım 2022 Gölyaka (Düzce) depremi (Mw5.9) meydana gelmiştir. Bu durum, çalışmadaki sonuçların doğruluğunu kanıtlamaktadır.

Kaynakça

  • [1] D.P. McKenzie, “Active tectonics of the Mediterranean region”, Geophysical Journal Royal Astronomical Society, 30, 109-185, 1972.
  • [2] Ö. Alptekin, “Focal Mechanisms of Earthquakes in Western Turkey and Their Tectonic Implications” Ph.D. thesis, New Mexico Instute of Mining and Teach., Socorro, New Mexico, USA, 1973.
  • [3] , A.M.C. Şengör, “The North Anatolian Transform Fault: its age, offset and tectonic significance”, Journal of Geol. Soc. London, 136:269–82, 1979.
  • [4] A.M.C. Şengör, N. Görür, F. Şaroğlu, “Strike slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike-slip Deformation, Basin Formation, and Sedimentation”, Soc. Econ. Paleontol. Miner. Spec. Publ. 37 (in honor of J.C. Crowell), ed. KT Biddle, N Christie-Blick, pp. 227–64, 1985.
  • [5] R.E. Reilinger, S.C. McCLusky, M.B. Oral, R.W. King, M.N. Toksöz, “Global Positioning System measurements of present-day crustal movements in the Arabia-Africa- Eurasia plate collision zone”, J. Geophys. Res., 102:9983–99, 1997.
  • [6] S. McClusky, S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Prilepin, R. Reilinger, I. Sanli, H. Seeger, H., A. Tealeb, M.N. Toksöz, G. Veis, “GPS constraints on plate kinematics and dynamics in the Eastern Mediterranean and Caucasus”, J. Geophys. Res., 105, 5695-5719, 2000.
  • [7] L. Gülen, A. Pınar, D. Kalafat, N. Özel, G. Horasan, M. Yılmazer, A.M. Işıkara, “Surface Fault Breaks, Aftershock Distribution, and Rupture Process of the August 17, 1999 Izmit, Turkey Earthquake”, Bulletin of the Society of America, 92, 230-244, 2002.
  • [8] A. Allen, J. Jackson, R. Walker, “Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates”, Tectonics, 2 3, TC2008, doi:10.1029/2003TC001530, 2004.
  • [9] R. Reilinger, S. McClusky, P. Vernant, S. Lawrence, S. Ergintav, R. Çakmak, M. Nadariya, “GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions” Journal of Geophysical Research: Solid Earth, 111(B5), 2006.
  • [10] H. Yalçın, L. Gülen, Z. Çağnan, D. Kalafat, “Kıbrıs ve Yakın Çevresinin Depremselliği”, 65. Jeoloji Kurultayı, Bildiri Özetleri Kitabı, s 4-5. Ankara, 2012.
  • [11] A. Barka, “Slip distribution along the North Anatolian Fault associated with large earthquakes of the period 1939 to 1967”, Bull. Seis. Soc. Amer., 86, 1238-1254, 1996.
  • [12] A. Barka, and K. Kadinsky-Cade, “Strikeslip fault geometry in Turkey and its influence on earthquake activity”, Tectonics, 7, 663-684, 1988.
  • [13] A. Barka, H.S. Akyüz, E. Altunel, G. Sunal, Z. Çakır, “The surface rupture and slip distribution of the 17 August 1999 İzmit earthquake (M 7.4), North Anatolian Fault”, Bulletin of the Seismological Society of America, 92:43–60, 2002.
  • [14] R.M. Langridge, H.D. Stenner, T.E. Fumal, S.A. Christofferson, T.K. Rockwell, R.D Hartleb, J. Bachhuber,& A.A. Barka, “Geometry, slip distribution, and kinematics of surface rupture on the Sakarya Fault segment during the 17 August 1999 İzmit, Turkey, earthquake”, Bulletin of the Seismological Society of America, 92, 107–125, 2002.
  • [15] R.D. Hartleb, J.F. Dolan, H.S. Akyüz, T. E. Dawson, A.Z. Tucker, B. Yerli, T.K. Rockwell, E. Toraman, E., Z. Çakır, Z., A. Dikbaş, A., and E. Altunel, “Surface rupture and slip distribution along the Karadere segment of the 12 November 1999 Düzce, Turkey, earthquakes”, Bulletin of Seismological Society of America, 92, 67-78, 2002.
  • [16] W.R. Lettis, J. Bachhuber, R.C. Witter, C. Brankman, E. Randolph, A.A. Barka, W.D. Page, A. Kaya, “Influence of releasing step-overs on surface fault rupture and fault segmentation: examples from the 17 August 1999 İzmit earthquake on the North Anatolian fault, Turkey,” Bulletin of Seismological Society of America, 92, 19–42, 2002.
  • [17] E. Herece, E. Akay, “Atlas of North Anatolian Fault (NAF). Ankara, Turkey: General Directorate of Mineral Research and Exploration”, Special Publication Series-2, 61: 13, 2003.
  • [18] R. Bürgmann, M.E. Ayhan, E.J. Fielding, T.J. Wright, S. McClusky, B. Aktuğ, C. Demir, O. Lenk, A. Türkezer, “Deformation during the 12 November 1999 Düzce, Turkey, earthquake, from GPS and InSAR data” Bulletin of Seismological Society of America, 92, 161–171, 2002.
  • [19] Ö. Emre, T.Y. Duman, Y. Awata, T. Yoshioka, A. Doğan, “17 Ağustos 1999 Doğu Marmara depremi yüzey kırığı: Eş zamanlı üçlü faylanma örneği” ATAG-3, Bildiri Özleri Kitabı, s. 4, 1999.
  • [20] T. Komut, Y. Ikeda, “17/08/1999 Kocaeli depremi yüzey kırığının arazi incelemesi”. ATAG-3, Bildiri Özleri Kitabı, sayfa 11, Sivas, 1999.
  • [21] Ö. Emre, T.Y. Duman, S. Özalp, H. Elmacı, Ş. Olgun, F. Şaroğlu, “1/1.250.000 Ölçekli Türkiye Diri Fay Haritası”, Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayınlar Serisi, Ankara, Türkiye, 2013.
  • [22] B.Ü. Kandilli Rasathanesi ve DAE. Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi, 17 Kasım 2021 Yayakbaşı-Düzce Depremi, Basın Bülteni, 2021.
  • [23] F.F. Pollitz, “Postseismic relaxation theory on the spherical earth”, Bulletin of the Seismological Soceity of America, 82, 422–453, 1992.
  • [24] F.F. Pollitz, “Gravitational viscoelastic postseismic relaxation on a layered spherical Earth”, Journal of Geophysical Research: Solid Earth, 102(B8), 17921-17941, 1997.
  • [25] M. Utkucu, F. Uzunca, E. Doğan, Sakarya Üniversitesi Afet Yönetim Uygulama ve Araştırma Merkezi, Jeofizik Mühendisliği Bölümü, 17 Kasım 2021 Yayakbaşı (Düzce) Depremi Ön Değerlendirme Raporu, Rapor No: 2021-1, Kasım 2021.
  • [26] J. L. Hardebeck, and P. M. Shearer, “Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes”, Bulletin of the Seismological Soceity of America, 93, 2434-2444, 2003.
  • [27] H. Kanamori, and J. W. Given, “Use of long-period surface waves for rapid determination of earthquake source parameters: 2. Preliminary determination of source mechanisms of large earthquakes (Ms > 6.5) in 1980”, Physics Earth Planetanery Interiors, 30, 260-268, 1982.
  • [28] A. M. Dziewonski, and J. H. Woodhouse , “An experiment in systematic study of global seismicity: centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981”, Journal of Geophysical Research, 88, 3247-3271, 1983.
  • [29] A. M., Dziewonski, A. Friedman, D. Giardini, and J. H. Woodhouse, “Global seismicity of 1982: centroid-moment tensor solutions for 308 earthquakes”, Physics Earth Planetary Interiors, 33, 76- 90, 1983.
  • [30] A. M. Dziewonski, J. E. Franzen, and J. H. Woodhouse, “Centroid-moment tensor solutions for July-September 1983”, Physics Earth Planetary Interiors, 34, 1-8, 1984.
  • [31] D. Giardini, “Systematic analysis of deep seismicity: 200 centroid-moment tensor solutions for earthquakes between 1977 and 1980”, Geophysical Journal of the Royal Astronomical Society, 77, 883-914, 1984.
  • [32] G. Ekström, and A. M. Dziewonski, “Centroid moment tensor solutions for 35 earthquakes in Western North America (1977-1983)”, Bulletin of the Seismological Soceity of America, 75, 23-39, 1985.
  • [33] A. M. Dziewonski, G. Ekström, J. E. Franzen, and J. H. Woodhouse, “Global seismicity of 1979: centroid-moment tensor solutions for 524 earthquakes”, Physics Earth Planetanery Interiors, 48, 18- 46, 1987.
  • [34] G. Ekström, A. M. Dziewonski, and J. H. Woodhouse, “Centroid-moment tensor solutions for the 51 IASPEI selected earthquakes, 1980-1984”, Physics Earth Planetanery Interiors, 47, 62- 66, 1987.
  • [35] R.S. Stein, A.A. Barka A.A., and J.H. Dieterich, “Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering”, Geophysical Journal International, 128, 594-604, 1997.
  • [36] G. C. P. King, R. S. Stein, and J. Lin, “Static stress changes and thetriggering of earthquakes”, Bulletin of the Seismological Society of America, 84, 935–953, 1994.
  • [37] G. C. P. King, A. Hubert-Ferrari, S. S. Nalbant, B. Meyer, R. Armijo, and D. Bowman, “Coulomb stress interactions and the 17 August 1999, Izmit, Turkey earthquake”, Comptes Rendus de l'Académie des Sciences, 333, 557–570, 2001.
  • [38] A. Hubert, G.C.P. King, A. Armijo, B. Meyer and D. Papanastassiou, “Fault re-activation, stress interaction and rupture propagation of the 1981 Corinth earthquake sequence”, Earth Planetary Science Letter, 142, 573-585, 1996.
  • [39] S. S. Nalbant, A. Hubert, and G. C. P. King, “Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea”, Journal of Geophysical Research, 103, 24,469–24,486, 1998.
  • [40] A. Hubert-Ferrari, A.A. Barka, E. Jacques, S.S. Nalbant, B. Meyer, R. Armijo, P. Topponnier, and G.C.P. King, “Seismic hazard in the Marmara Sea region following the 17 August 1999 İzmit earthquake”, Nature, 404, 269-273, 2000.
  • [41] G.C.P. King and M. Cocco, “Fault interaction by elastic stress changes: new clues from earthquake sequences”, Advances in Geophysics, 44, 1–38, 2000.
  • [42] 1 S. Das and C. Scholz, “Theory of Time-Dependent Rupture in the Earth”, Journal of Geophysical Research, 86, 6039-6051, 1981.
  • [43] R. Stein, and M. Liwoski, “The 1979 Homestead Valley earthquake sequence, California: control of aftershocks and postseismic deformation”, Journal of Geophysical Research, 88, 6477-6490, 1983.
  • [44] R.S. Stein, “The role of stress transfer in earthquake occurrence”, Nature, Vol. 402, 605–609, 1999.
  • [45] M. Utkucu, A. Pınar, Ö. Alptekin, “Uzak alan P dalga Şekillerinin Sonlu Fay Ters Çözümünden 22 Mayıs 1971 Bingöl Depremi Kırılma Sürecinin İncelenmesi”, Yerbilimleri, 28, 65-79, 2003.
  • [46] S. Toda, R. Stein, “Toggling of Seismicity by the 1997 Kagoshima Earthquake Couplet: A Demonstration of Time-Dependent Stress Transfer”, Journal of Geophysical Research, Vol. 108, No. B12, 2567, 2003.
  • [47] T. Parsons, “Recalculated probability of M ≥7 earthquakes beneath the Sea of Marmara, Turkey”, Journal of Geophysical Research, Vol. 109, B05304, 2004.
  • [48] S. Toda, R.S. Stein, K.R. Dinger, and S.B. Bozkurt, “Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer”, Journal of Geophysical Research, Vol. 110, B05S16, 2005.
  • [49] İ. Seymen, “Kelkit Vadisi Kesiminde Kuzey Anadolu Fay Zonunun Tektonik Özelliği: Dr. Eng.”, İstanbul Tek. Univ., Maden Fak., XIX+192 pp.+2 foldout maps, 1975.
  • [50] Y. Tatar, “Kuzey Anadolu Fay Zonu’nun Erzincan-Refahiye arasındaki bölümü üzerinde tektonik incelemeler”, Yerbilimleri Dergisi, 5(3/4), 201-236, 1978.
  • [51] A.A. Barka, “Seismo-tectonic aspects of the North Anatolian fault zone”, Ph.D. thesis, University of Bristol, England, 335 pp, 1981.
  • [52] A.A. Barka, “The North Anatolian Fault zone”, Annales Tectonicae, 6:164–95, 1992.
  • [53] A.A. Barka, P.L. Hancock, “Neotectonic deformation patterns in the convex-northwards arc of the North Anatolian fault zone”. Geological Society, London, Special Publications, 17(1), 763- 774, 1984.
  • [54] F. Şaroğlu, “Doğu Anadolu’nun Neotektonik Dönemde Jeolojik ve Yapısal Evrimi”, Ph.D thesis. İstanbul Univ., Fen Bilim. Enst., İstanbul. 240 pp.+7 foldouts, 1985.
  • [55] F. Şaroğlu, “Age and offset of the North Anatolian Fault”, METU J. Appl. Sci. 21:65-79, 1988.
  • [56] A. Koçyiğit, “Basic geological characteristics and total offset of the North Anatolian Fault zone in Suşehri area, NE Turkey”. METU Pure and Applied Sciences, 22, 43-68, 1988.
  • [57] A. Koçyiğit, “Suşehri Basin: An Active Faultwedge Basin on the North Anatolian Fault Zone, Turkey”, Tectonophysics, 167, 11–29, 1989.
  • [58] A. Koçyiğit, “Tectonic setting of the Gölova basin: total offset of the North Anatolian Fault Zone, E. Pontide, Turkey”. Ann. Tectonicae, 4, 155-170, 1990.
  • [59] V. Toprak, “Neotectonic characteristics of the North Anatolian Fault Zone between Koyulhisar and Suşehri (NE Turkey)” METU J. Pure Ap. Sci., 21:155-66, 1988.
  • [60] C. Yaltırak, “Ganos Fay Sistemi’nin tektonik tarihi”. Türk. Petrol Jeol. Derneği, Bül. 8:137–56, 1996.
  • [61] J.D.A. Piper, O. Tatar, H. Gürsoy, “Deformational behaviour of continental lithosphere deduced from block rotations across the North Anatolian Fault Zone in Turkey.” Earth Planet. Sci. Lett. 150:191–203, 1997.
  • [62] O. Tüysüz, E. Yiğitbaş, T. Genç, U. Tarı, “Batı Karadeniz Bölgesinin Tektonik Birliklerinin Ayırdı ve 1: 500.000 Ölçekli Jeoloji Haritasının Hazırlanması [Tectonic Units of Western Black Sea Region and Their Geological Mapping at 1: 500.000 Scale]”, TÜBİTAK Project Report YDABÇAG-17, 1998.
  • [63] R. Armijo, B. Meyer, A. Hubert-Ferrari, A.A. Barka, “Westward propagation of North Anatolian Fault into the Northern Aegean: timing and kinematics”. Geology, 27:267–70, 1999.
  • [64] A.A. Barka, H.S. Akyüz, H.A. Cohen, F. Watchorn, “Tectonic evolution of the Niksar and Taşova-Erbaa pull-apart basins, North Anatolian Fault Zone: their significance for the motion of the Anatolian Block”. Tectonophysics, 322:243–64, 2000.
  • [65] R. Westaway, “Present-day kinematics of the Middle East and eastern Mediterranean”. Journal of Geophysical Research: Solid Earth, 99(B6), 12071-12090, 1994.
  • [66] Y. Tatar, “Düzce İl Gelişme Planı. Çevre ve Mekansal Gelişme Sektörü Raporu, Düzce”, 103 s, 2003.
  • [67] F. Şaroğlu, Ö. Emre, A. Boray, “Türkiye’nin Diri Fayları ve Depremsellikleri” MTA Genel Müdürlüğü, Rapor No: 8174, Ankara, 394s (yayımlanmamış), 1987.
  • [68] F. Şaroğlu, Ö. Emre, İ. Kuşçu, Türkiye Diri Fay Haritası. MTA Genel Müdürlüğü, Ankara, 1992.
  • [69] E. Alsan, L. Tezuçan, and M. Bath, “An earthquake catalogue for Turkey for the interval 1913-1970”, Kandilli Observatory Seismological Department Çengelköy-İstanbul, Turkey and Seismological Institute Box, 517, S-751 20 Uppsala, Sweden. 1975.
  • [70] E. Ayhan, E. Alsan, N. Sancaklı, S.B. Üçer, “Türkiye ve Dolayları Deprem Kataloğu 1881- 1980”, Boğaziçi Üniversitesi Yayınları, 1980.
  • [71] N.N. Ambraseys, C.F. Finkel, “Long-term seismicity of İstanbul and of the Marmara Sea region”. Terra Nova 3, 527–539, 1991.
  • [72] N.N. Ambraseys, C.F. Finkel, “The seismicity of Turkey and Adjacent Areas, a Historical Review”, 1500- 1800, Eren yayıncılık, İstanbul, 1995.
  • [73] United States Geological Survey web page, https://earthquake.usgs.gov/earthquakes/search/ Erişim Tarihi: 22.11.2021.
  • [74] R.B. Herrmann, “Computer programs in seismology: An evolving tool for instruction and research”, Seismological Research. Letters., 84, 1081-1088, doi:10.1785/0220110096, 2013.
  • [75] T. Lay, T. C. Wallace, Modern Global Seismology, Academic Press, San Diego, 521pp, 1995
  • [76] C.A. Langston, “Source inversion of seismic waveforms: the Koyna, India, earthquakes of September 13, 1967”. Bulletin of the Seismological Society of America, 71:1-24, 1981.
  • [77] S. Toda, R.S. Stein, V. Sevilgen, and J. Lin, Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide: U.S. Geological Survey Open-File Report 2011-1060, 63 p., available at http://pubs.usgs.gov/of/2011/1060/, 2011.
  • [78] Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, http://www.koeri.boun.edu.tr/sismo/2/earthquake-catalog/
  • [79] İzmit Rapor AFAD Deprem Dairesi Başkanlığı. [Çevrimiçi]. Erişim Adresi: https://deprem.afad.gov.tr/depremdetay?eventID=246572. Erişim Tarihi: 22.11.2021.
  • [80] Y. Li, L. Huang, R. Ding, S. Yang, L. Liu, S. Zhang and H. Liu, “Coulomb stress changes associated with the M7.3 Maduo earthquake and implications for seismic hazards”, Natural Hazards Research 1, 95-101, 2021.
  • [81] Z. Çakır, A.A. Barka, S. Akyüz, “Coulomb gerilme etkileşimleri ve 1999 Marmara depremleri”, itüdergisi/d mühendislik, Cilt:2, Sayı:4, 99-111, 2003.
  • [82] 17 Kasım 2021 Merkez (Düzce) Mw5.0 Depremine İlişkin Ön Değerlendirme Raporu, AFAD İzmir rapor AFAD Deprem Dairesi Başkanlığı. https://deprem.afad.gov.tr/event-detail/10003, Erişim tarihi: 18 Kasım 2021.
  • [83] 23 Kasım 2022 Gölyaka (Düzce) Mw5.9 Depremine İlişkin Ön Değerlendirme Raporu, AFAD Deprem Dairesi Başkanlığı. https://deprem.afad.gov.tr/event-detail/401390, Erişim tarihi: 23 Kasım 2023.
  • [84] AFAD, T.C. İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı, https://deprem.afad.gov.tr/event-catalog
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nihan Hoskan 0000-0001-5507-9818

Yayımlanma Tarihi 26 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Hoskan, N. (2024). 17 Kasım 2021 Merkez (Düzce) Depremi (Mw5.0) ve Artçı Şoklarının (Mw4.3 ve Mw3.9) Moment Tensör Çözümleri ve Ana Şok Coulomb Gerilme Analizi. Duzce University Journal of Science and Technology, 12(1), 419-438. https://doi.org/10.29130/dubited.1112340
AMA Hoskan N. 17 Kasım 2021 Merkez (Düzce) Depremi (Mw5.0) ve Artçı Şoklarının (Mw4.3 ve Mw3.9) Moment Tensör Çözümleri ve Ana Şok Coulomb Gerilme Analizi. DÜBİTED. Ocak 2024;12(1):419-438. doi:10.29130/dubited.1112340
Chicago Hoskan, Nihan. “17 Kasım 2021 Merkez (Düzce) Depremi (Mw5.0) Ve Artçı Şoklarının (Mw4.3 Ve Mw3.9) Moment Tensör Çözümleri Ve Ana Şok Coulomb Gerilme Analizi”. Duzce University Journal of Science and Technology 12, sy. 1 (Ocak 2024): 419-38. https://doi.org/10.29130/dubited.1112340.
EndNote Hoskan N (01 Ocak 2024) 17 Kasım 2021 Merkez (Düzce) Depremi (Mw5.0) ve Artçı Şoklarının (Mw4.3 ve Mw3.9) Moment Tensör Çözümleri ve Ana Şok Coulomb Gerilme Analizi. Duzce University Journal of Science and Technology 12 1 419–438.
IEEE N. Hoskan, “17 Kasım 2021 Merkez (Düzce) Depremi (Mw5.0) ve Artçı Şoklarının (Mw4.3 ve Mw3.9) Moment Tensör Çözümleri ve Ana Şok Coulomb Gerilme Analizi”, DÜBİTED, c. 12, sy. 1, ss. 419–438, 2024, doi: 10.29130/dubited.1112340.
ISNAD Hoskan, Nihan. “17 Kasım 2021 Merkez (Düzce) Depremi (Mw5.0) Ve Artçı Şoklarının (Mw4.3 Ve Mw3.9) Moment Tensör Çözümleri Ve Ana Şok Coulomb Gerilme Analizi”. Duzce University Journal of Science and Technology 12/1 (Ocak 2024), 419-438. https://doi.org/10.29130/dubited.1112340.
JAMA Hoskan N. 17 Kasım 2021 Merkez (Düzce) Depremi (Mw5.0) ve Artçı Şoklarının (Mw4.3 ve Mw3.9) Moment Tensör Çözümleri ve Ana Şok Coulomb Gerilme Analizi. DÜBİTED. 2024;12:419–438.
MLA Hoskan, Nihan. “17 Kasım 2021 Merkez (Düzce) Depremi (Mw5.0) Ve Artçı Şoklarının (Mw4.3 Ve Mw3.9) Moment Tensör Çözümleri Ve Ana Şok Coulomb Gerilme Analizi”. Duzce University Journal of Science and Technology, c. 12, sy. 1, 2024, ss. 419-38, doi:10.29130/dubited.1112340.
Vancouver Hoskan N. 17 Kasım 2021 Merkez (Düzce) Depremi (Mw5.0) ve Artçı Şoklarının (Mw4.3 ve Mw3.9) Moment Tensör Çözümleri ve Ana Şok Coulomb Gerilme Analizi. DÜBİTED. 2024;12(1):419-38.