Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Low Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures with GFRP Face Sheets by Finite Element Method

Yıl 2024, , 2159 - 2184, 23.10.2024
https://doi.org/10.29130/dubited.1477434

Öz

The aim of this study is to examine the low velocity impact behavior of aluminum honeycomb sandwich structures with glass fiber reinforced plastic (GFRP) face sheets with the help of finite element method. In the study, low velocity impact tests were carried out in the LS DYNA finite element program to examine the effects of face sheets thickness, core number, wall thickness, impact location and impact velocity on maximum contact force, absorbed energy efficiency and damage mode. Progressive damage analysis based on the Hashin damage criterion and the combination of Cohesive Zone Model (CZM) and the bilinear traction-separation law was performed using the MAT-54 material model. At the end of the study, it was determined that the face sheets thickness in sandwich structures had a significant effect on the impact resistance up to a certain impact energy. It has been observed that as the impact velocity gradually increases, there is a decrease in the contact force after a certain threshold value. As the impactor velocity increases, the energy absorption efficiency also increases. It has been determined that the location of the impact is very effective on peak force and energy absorption efficiency. The effect of the number of core layers depends on the face sheets thickness. When the face sheets thickness was not damaged at first contact, the peak force value increased in parallel with the number of layers. It was determined that the dominant damage mode after impact was matrix damage. It has been observed that as the energy level of the impactor increases, damage also occurs on the back surfaces.

Kaynakça

  • [1] Y. Rong, J. Liu, W. Luo, and W. He, “Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels,” Compos B Eng, vol. 152, no. August, pp. 324–335, 2018, doi: 10.1016/j.compositesb.2018.08.130.
  • [2] W. He, J. Liu, B. Tao, D. Xie, J. Liu, and M. Zhang, “Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures,” Compos Struct, vol. 158, pp. 30–43, 2016, doi: 10.1016/j.compstruct.2016.09.009.
  • [3] J. Liu, W. He, D. Xie, and B. Tao, “The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures,” Compos B Eng, vol. 111, pp. 315–331, 2017, doi: 10.1016/j.compositesb.2016.11.060.
  • [4] Y. Hu, W. Li, X. An, and H. Fan, “Fabrication and mechanical behaviors of corrugated lattice truss composite sandwich panels,” Compos Sci Technol, vol. 125, pp. 114–122, 2016, doi: 10.1016/j.compscitech.2016.02.003.
  • [5] I. Bozkurt, M. O. Kaman, and M. Albayrak., “LS-DYNA MAT162 Finding Material Inputs and Investigation of Impact Damage in Carbon Composite Plates. XVI. international research conference 2022.,” 2022.
  • [6] A. Chinnarasu and K. Ramajeyathilagam, “Numerical study on influence of target thickness on impact response of GFRP composites,” Mater Today Proc, Jan. 2023, doi: 10.1016/j.matpr.2023.01.201.
  • [7] A. Kurşun, M. Şenel, and H. M. Enginsoy, “Experimental and numerical analysis of low velocity impact on a preloaded composite plate,” Advances in Engineering Software, vol. 90, pp. 41–52, 2015, doi: 10.1016/j.advengsoft.2015.06.010.
  • [8] F. Islam, R. Caldwell, A. W. Phillips, N. A. S. John, and B. G. Prusty, “A review of relevant impact behaviour for improved durability of marine composite propellers,” Composites Part C: Open Access, p. 100251, 2022, doi: 10.1016/j.jcomc.2022.100251.
  • [9] S. Li, X. Li, Z. Wang, G. Wu, G. Lu, and L. Zhao, “Sandwich panels with layered graded aluminum honeycomb cores under blast loading,” Compos Struct, vol. 173, pp. 242–254, Aug. 2017, doi: 10.1016/J.Compstruct.2017.04.037.
  • [10] T Zhao, Y Jiang, Y Zhu, Z Wan, D Xiao, Y Li, H Li, C Wu, D Fang.,“An experimental investigation on low-velocity impact response of a novel corrugated sandwiched composite structure,” Compos Struct, vol. 252, no. June, p. 112676, 2020, doi: 10.1016/j.compstruct.2020.112676.
  • [11] J. Zhang, K. Liu, Y. Ye, and Q. Qin, “Low-velocity impact of rectangular multilayer sandwich plates,” Thin-Walled Structures, vol. 141, no. April, pp. 308–318, 2019, doi: 10.1016/j.tws.2019.04.033.
  • [12] A. Manes, A. Gilioli, C. Sbarufatti, and M. Giglio, “Experimental and numerical investigations of low velocity impact on sandwich panels,” Compos Struct, vol. 99, pp. 8–18, 2013, doi: 10.1016/j.compstruct.2012.11.031.
  • [13] S. H. Abo Sabah, A. B. H. Kueh, and N. M. Bunnori, “Failure mode maps of bio-inspired sandwich beams under repeated low-velocity impact,” Compos Sci Technol, vol. 182, no. February, p. 107785, 2019, doi: 10.1016/j.compscitech.2019.107785.
  • [14] A. Akatay, M. Ö. Bora, O. Çoban, S. Fidan, and V. Tuna, “The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures,” Compos Struct, vol. 125, pp. 425–433, 2015, doi: 10.1016/j.compstruct.2015.02.057.
  • [15] C. C. Foo, L. K. Seah, and G. B. Chai, “Low-velocity impact failure of aluminium honeycomb sandwich panels,” Compos Struct, vol. 85, no. 1, pp. 20–28, Sep. 2008, doi: 10.1016/J.Compstruct.2007.10.016.
  • [16] X. Li, P. Zhang, Z. Wang, G. Wu, and L. Zhao, “Dynamic behavior of aluminum honeycomb sandwich panels under air blast: Experiment and numerical analysis,” Compos Struct, vol. 108, no. 1, pp. 1001–1008, Feb. 2014, doi: 10.1016/J.Compstruct.2013.10.034.
  • [17] V. Crupi, G. Epasto, and E. Guglielmino, “Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading,” Int J Impact Eng, vol. 43, pp. 6–15, May 2012, doi: 10.1016/J.Ijimpeng.2011.12.002.
  • [18] W. He, J. Liu, S. Wang, and D. Xie, “Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores,” Compos Struct, vol. 189, no. January, pp. 37–53, 2018, doi: 10.1016/j.compstruct.2018.01.024.
  • [19] W. He, J. Liu, S. Wang, and D. Xie, “Low-velocity impact behavior of X-Frame core sandwich structures – Experimental and numerical investigation,” Thin-Walled Structures, vol. 131, no. July, pp. 718–735, 2018, doi: 10.1016/j.tws.2018.07.042.
  • [20] I. Bozkurt, M. O. Kaman, and M. Albayrak, “Low-velocity impact behaviours of sandwiches manufactured from fully carbon fiber composite for different cell types and compression behaviours for different core types,” Materialpruefung/Materials Testing, vol. 65, no. 9, pp. 1349–1372, 2023, doi: 10.1515/mt-2023-0024.
  • [21] M. Albayrak, M. O. Kaman, and I. Bozkurt, “The effect of lamina configuration on low-velocity impact behaviour for glass fiber/rubber curved composites,” J Compos Mater, vol. 57, no. 11, pp. 1875–1908, 2023, doi: 10.1177/00219983231164950.
  • [22] M. Albayrak, M. O. Kaman, and I. Bozkurt, “Determination of LS-DYNA MAT162 Material Input Parameters for Low Velocity Impact Analysis of Layered Composites,” pp. 39–43, 2022.
  • [23] W. He, L. Yao, X. Meng, G. Sun, D. Xie, and J. Liu, “Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets,” Thin-Walled Structures, vol. 137, no. August 2018, pp. 411–432, 2019, doi: 10.1016/j.tws.2019.01.022.
  • [24] X. Xue, C. Zhang, W. Chen, M. Wu, and J. Zhao, “Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass,” Compos Struct, vol. 226, no. May, p. 111223, 2019, doi: 10.1016/j.compstruct.2019.111223.
  • [25] I. Bozkurt, M. O. Kaman, and M. Albayrak, “Experimental and numerical impact behavior of fully carbon fiber sandwiches for different core types,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 5, p. 318, May 2024, doi: 10.1007/s40430-024-04865-3.
  • [26] H. JO., LS-DYNA Keyword User’s Manual Volume II Material Models, Version 971. Livermore Software Technology Corporation; . [24]. 2017.
  • [27] F. Dogan, H. Hadavinia, T. Donchev, and P. S. Bhonge, “Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact,” Central European Journal of Engineering, vol. 2, no. 4, pp. 612–626, 2012, doi: 10.2478/S13531-012-0018-0.
  • [28] Z. Hashin, “Failure criteria for unidirectional fiber composites,” Journal of Applied Mechanics, Transactions ASME, vol. 47, no. 2, pp. 329–334, 1980, doi: 10.1115/1.3153664.
  • [29] M. Albayrak and M. O. Kaman, “Production of Curved Surface Composites Reinforced With Rubber Layer,” European Journal of Technic, vol. 11, no. 1, pp. 19–22, 2021, doi: 10.36222/ejt.824761.
  • [30] M. Albayrak, M. O. Kaman, and I. Bozkurt, “Experimental and Numerical Investigation of the Geometrical Effect on Low Velocity Impact Behavior for Curved Composites with a Rubber Interlayer,” Applied Composite Materials, vol. 30, no. 2, pp. 507–538, 2023, doi: 10.1007/s10443-022-10094-5.
  • [31] V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, “Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches,” Int J Impact Eng, vol. 77, pp. 97–107, 2015, doi: 10.1016/j.ijimpeng.2014.11.012.
  • [32] C. C. Foo, L. K. Seah, and G. B. Chai, “Low-velocity impact failure of aluminium honeycomb sandwich panels,” Compos Struct, vol. 85, no. 1, pp. 20–28, Sep. 2008, doi: 10.1016/J.Compstruct.2007.10.016.
  • [33] İ. Bozkurt, M. Kaman, and M. Albayrak, “LS-DYNA MAT162 Finding Material Inputs and Investigation of Impact Damage in Carbon Composite Plates. XVI. international research conference 2022.,” pp. 3–7, 2022.
  • [34] A Tarafdar, G Liaghat, H Ahmadi, O Razmkhah, SC Charandabi, MR Faraz, E Pedram., “Quasi-static and low-velocity impact behavior of the bio-inspired hybrid Al/GFRP sandwich tube with hierarchical core: Experimental and numerical investigation,” Compos Struct, vol. 276, p. 114567, Nov. 2021, doi: 10.1016/J.Compstruct.2021.114567.
  • [35] B. M. Icten, B. G. Kiral, and M. E. Deniz, “Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates,” Compos B Eng, vol. 50, pp. 325–332, 2013, doi: 10.1016/j.compositesb.2013.02.024.
  • [36] T. Boonkong, Y. O. Shen, Z. W. Guan, and W. J. Cantwell, “The low velocity impact response of curvilinear-core sandwich structures,” Int J Impact Eng, vol. 93, pp. 28–38, 2016, doi: 10.1016/j.ijimpeng.2016.01.012.
  • [37] JS Yang, WM Zhang, F Yang, SY Chen, R Schmidt, KU Schröder, L Ma, LZ Wu., “Low velocity impact behavior of carbon fibre composite curved corrugated sandwich shells,” Compos Struct, vol. 238, no. August 2019, pp. 1–16, 2020, doi: 10.1016/j.compstruct.2020.112027.
  • [38] Y. Chen, S. Hou, K. Fu, X. Han, and L. Ye, “Low-velocity impact response of composite sandwich structures: Modelling and experiment,” Compos Struct, vol. 168, pp. 322–334, 2017, doi: 10.1016/j.compstruct.2017.02.064.
  • [39] W. Shen, B. Luo, R. Yan, H. Zeng, and L. Xu, “The mechanical behavior of sandwich composite joints for ship structures,” Ocean Engineering, vol. 144, no. July, pp. 78–89, 2017, doi: 10.1016/j.oceaneng.2017.08.039.
  • [40] Y. Duan, Z. Cui, X. Xie, Y. Tie, T. Zou, and T. Wang, “Mechanical characteristics of composite honeycomb sandwich structures under oblique impact,” Theoretical and Applied Mechanics Letters, vol. 12, no. 5, p. 100379, Sep. 2022, doi: 10.1016/J.Taml.2022.100379.

GFRP Yüzeyli Alüminyum Petek Sandviç Yapıların Düşük Hızlı Darbe Davranışlarının Sonlu Elemanlar Yöntemi ile İncelenmesi

Yıl 2024, , 2159 - 2184, 23.10.2024
https://doi.org/10.29130/dubited.1477434

Öz

Bu çalışmanın amacı cam fiber takviyeli plastik (GFRP) yüzey tabakalı alüminyum petek sandviç yapıların düşük hızlı darbe davranışlarını sonlu elemanlar yöntemi yardımıyla incelemektir. Çalışmada face sheets kalınlığının, core sayınının, duvar kalınlığının, darbe konumunun ve darbe hızının maksimum temas kuvveti, darbe enerjisi emilimi ve hasar modu üzerindeki etkilerini incelemek için düşük hızlı darbe testleri LS DYNA sonlu elemanlar programında gerçekleştirilmiştir. MAT-54 malzeme modeli kullanılarak Hashin hasar kriteri ve Kohezif Bölge Modeli (CZM) ile çift doğrusal çekiş-ayırma yasasının kombinasyonuna dayalı ilerlemeli hasar analizi gerçekleştirilmiştir. Çalışma sonunda sandviç yapılarda kapak kalınlığının darbe direnci üzerinde belirli bir darbe enerjisine kadar önemli bir etkiye sahip olduğu belirlenmiştir. Darbe hızı kademeli bir şekilde artıkça belirli bir eşik değerinden sonra temas kuvvetinde düşüşün meydana geldiği belirlenmiştir. Vurucu hızı artıkça enerji absorbe verimliliği de artmaktadır. Darbenin konumu peak force ve enerji absorbe verimliliği üzerinde çok etkili olduğu belirlenmiştir. Çekirdek katman sayısının etkisi kapak kalınlığına bağlıdır. Kapak kalınlığı ilk temas durumunda hasar almadığı zaman katman sayısı ile paralel olarak peak force değerinin artığı belirlenmiştir. Darbeden sonra baskın hasar modunun matris hasarı olduğu belirlenmiştir. Vurucunun enerji seviyesi artıkça arka yüzeylerde de hasarların meydana geldiği belirlenmiştir

Kaynakça

  • [1] Y. Rong, J. Liu, W. Luo, and W. He, “Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels,” Compos B Eng, vol. 152, no. August, pp. 324–335, 2018, doi: 10.1016/j.compositesb.2018.08.130.
  • [2] W. He, J. Liu, B. Tao, D. Xie, J. Liu, and M. Zhang, “Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures,” Compos Struct, vol. 158, pp. 30–43, 2016, doi: 10.1016/j.compstruct.2016.09.009.
  • [3] J. Liu, W. He, D. Xie, and B. Tao, “The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures,” Compos B Eng, vol. 111, pp. 315–331, 2017, doi: 10.1016/j.compositesb.2016.11.060.
  • [4] Y. Hu, W. Li, X. An, and H. Fan, “Fabrication and mechanical behaviors of corrugated lattice truss composite sandwich panels,” Compos Sci Technol, vol. 125, pp. 114–122, 2016, doi: 10.1016/j.compscitech.2016.02.003.
  • [5] I. Bozkurt, M. O. Kaman, and M. Albayrak., “LS-DYNA MAT162 Finding Material Inputs and Investigation of Impact Damage in Carbon Composite Plates. XVI. international research conference 2022.,” 2022.
  • [6] A. Chinnarasu and K. Ramajeyathilagam, “Numerical study on influence of target thickness on impact response of GFRP composites,” Mater Today Proc, Jan. 2023, doi: 10.1016/j.matpr.2023.01.201.
  • [7] A. Kurşun, M. Şenel, and H. M. Enginsoy, “Experimental and numerical analysis of low velocity impact on a preloaded composite plate,” Advances in Engineering Software, vol. 90, pp. 41–52, 2015, doi: 10.1016/j.advengsoft.2015.06.010.
  • [8] F. Islam, R. Caldwell, A. W. Phillips, N. A. S. John, and B. G. Prusty, “A review of relevant impact behaviour for improved durability of marine composite propellers,” Composites Part C: Open Access, p. 100251, 2022, doi: 10.1016/j.jcomc.2022.100251.
  • [9] S. Li, X. Li, Z. Wang, G. Wu, G. Lu, and L. Zhao, “Sandwich panels with layered graded aluminum honeycomb cores under blast loading,” Compos Struct, vol. 173, pp. 242–254, Aug. 2017, doi: 10.1016/J.Compstruct.2017.04.037.
  • [10] T Zhao, Y Jiang, Y Zhu, Z Wan, D Xiao, Y Li, H Li, C Wu, D Fang.,“An experimental investigation on low-velocity impact response of a novel corrugated sandwiched composite structure,” Compos Struct, vol. 252, no. June, p. 112676, 2020, doi: 10.1016/j.compstruct.2020.112676.
  • [11] J. Zhang, K. Liu, Y. Ye, and Q. Qin, “Low-velocity impact of rectangular multilayer sandwich plates,” Thin-Walled Structures, vol. 141, no. April, pp. 308–318, 2019, doi: 10.1016/j.tws.2019.04.033.
  • [12] A. Manes, A. Gilioli, C. Sbarufatti, and M. Giglio, “Experimental and numerical investigations of low velocity impact on sandwich panels,” Compos Struct, vol. 99, pp. 8–18, 2013, doi: 10.1016/j.compstruct.2012.11.031.
  • [13] S. H. Abo Sabah, A. B. H. Kueh, and N. M. Bunnori, “Failure mode maps of bio-inspired sandwich beams under repeated low-velocity impact,” Compos Sci Technol, vol. 182, no. February, p. 107785, 2019, doi: 10.1016/j.compscitech.2019.107785.
  • [14] A. Akatay, M. Ö. Bora, O. Çoban, S. Fidan, and V. Tuna, “The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures,” Compos Struct, vol. 125, pp. 425–433, 2015, doi: 10.1016/j.compstruct.2015.02.057.
  • [15] C. C. Foo, L. K. Seah, and G. B. Chai, “Low-velocity impact failure of aluminium honeycomb sandwich panels,” Compos Struct, vol. 85, no. 1, pp. 20–28, Sep. 2008, doi: 10.1016/J.Compstruct.2007.10.016.
  • [16] X. Li, P. Zhang, Z. Wang, G. Wu, and L. Zhao, “Dynamic behavior of aluminum honeycomb sandwich panels under air blast: Experiment and numerical analysis,” Compos Struct, vol. 108, no. 1, pp. 1001–1008, Feb. 2014, doi: 10.1016/J.Compstruct.2013.10.034.
  • [17] V. Crupi, G. Epasto, and E. Guglielmino, “Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading,” Int J Impact Eng, vol. 43, pp. 6–15, May 2012, doi: 10.1016/J.Ijimpeng.2011.12.002.
  • [18] W. He, J. Liu, S. Wang, and D. Xie, “Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores,” Compos Struct, vol. 189, no. January, pp. 37–53, 2018, doi: 10.1016/j.compstruct.2018.01.024.
  • [19] W. He, J. Liu, S. Wang, and D. Xie, “Low-velocity impact behavior of X-Frame core sandwich structures – Experimental and numerical investigation,” Thin-Walled Structures, vol. 131, no. July, pp. 718–735, 2018, doi: 10.1016/j.tws.2018.07.042.
  • [20] I. Bozkurt, M. O. Kaman, and M. Albayrak, “Low-velocity impact behaviours of sandwiches manufactured from fully carbon fiber composite for different cell types and compression behaviours for different core types,” Materialpruefung/Materials Testing, vol. 65, no. 9, pp. 1349–1372, 2023, doi: 10.1515/mt-2023-0024.
  • [21] M. Albayrak, M. O. Kaman, and I. Bozkurt, “The effect of lamina configuration on low-velocity impact behaviour for glass fiber/rubber curved composites,” J Compos Mater, vol. 57, no. 11, pp. 1875–1908, 2023, doi: 10.1177/00219983231164950.
  • [22] M. Albayrak, M. O. Kaman, and I. Bozkurt, “Determination of LS-DYNA MAT162 Material Input Parameters for Low Velocity Impact Analysis of Layered Composites,” pp. 39–43, 2022.
  • [23] W. He, L. Yao, X. Meng, G. Sun, D. Xie, and J. Liu, “Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets,” Thin-Walled Structures, vol. 137, no. August 2018, pp. 411–432, 2019, doi: 10.1016/j.tws.2019.01.022.
  • [24] X. Xue, C. Zhang, W. Chen, M. Wu, and J. Zhao, “Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass,” Compos Struct, vol. 226, no. May, p. 111223, 2019, doi: 10.1016/j.compstruct.2019.111223.
  • [25] I. Bozkurt, M. O. Kaman, and M. Albayrak, “Experimental and numerical impact behavior of fully carbon fiber sandwiches for different core types,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 5, p. 318, May 2024, doi: 10.1007/s40430-024-04865-3.
  • [26] H. JO., LS-DYNA Keyword User’s Manual Volume II Material Models, Version 971. Livermore Software Technology Corporation; . [24]. 2017.
  • [27] F. Dogan, H. Hadavinia, T. Donchev, and P. S. Bhonge, “Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact,” Central European Journal of Engineering, vol. 2, no. 4, pp. 612–626, 2012, doi: 10.2478/S13531-012-0018-0.
  • [28] Z. Hashin, “Failure criteria for unidirectional fiber composites,” Journal of Applied Mechanics, Transactions ASME, vol. 47, no. 2, pp. 329–334, 1980, doi: 10.1115/1.3153664.
  • [29] M. Albayrak and M. O. Kaman, “Production of Curved Surface Composites Reinforced With Rubber Layer,” European Journal of Technic, vol. 11, no. 1, pp. 19–22, 2021, doi: 10.36222/ejt.824761.
  • [30] M. Albayrak, M. O. Kaman, and I. Bozkurt, “Experimental and Numerical Investigation of the Geometrical Effect on Low Velocity Impact Behavior for Curved Composites with a Rubber Interlayer,” Applied Composite Materials, vol. 30, no. 2, pp. 507–538, 2023, doi: 10.1007/s10443-022-10094-5.
  • [31] V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, “Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches,” Int J Impact Eng, vol. 77, pp. 97–107, 2015, doi: 10.1016/j.ijimpeng.2014.11.012.
  • [32] C. C. Foo, L. K. Seah, and G. B. Chai, “Low-velocity impact failure of aluminium honeycomb sandwich panels,” Compos Struct, vol. 85, no. 1, pp. 20–28, Sep. 2008, doi: 10.1016/J.Compstruct.2007.10.016.
  • [33] İ. Bozkurt, M. Kaman, and M. Albayrak, “LS-DYNA MAT162 Finding Material Inputs and Investigation of Impact Damage in Carbon Composite Plates. XVI. international research conference 2022.,” pp. 3–7, 2022.
  • [34] A Tarafdar, G Liaghat, H Ahmadi, O Razmkhah, SC Charandabi, MR Faraz, E Pedram., “Quasi-static and low-velocity impact behavior of the bio-inspired hybrid Al/GFRP sandwich tube with hierarchical core: Experimental and numerical investigation,” Compos Struct, vol. 276, p. 114567, Nov. 2021, doi: 10.1016/J.Compstruct.2021.114567.
  • [35] B. M. Icten, B. G. Kiral, and M. E. Deniz, “Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates,” Compos B Eng, vol. 50, pp. 325–332, 2013, doi: 10.1016/j.compositesb.2013.02.024.
  • [36] T. Boonkong, Y. O. Shen, Z. W. Guan, and W. J. Cantwell, “The low velocity impact response of curvilinear-core sandwich structures,” Int J Impact Eng, vol. 93, pp. 28–38, 2016, doi: 10.1016/j.ijimpeng.2016.01.012.
  • [37] JS Yang, WM Zhang, F Yang, SY Chen, R Schmidt, KU Schröder, L Ma, LZ Wu., “Low velocity impact behavior of carbon fibre composite curved corrugated sandwich shells,” Compos Struct, vol. 238, no. August 2019, pp. 1–16, 2020, doi: 10.1016/j.compstruct.2020.112027.
  • [38] Y. Chen, S. Hou, K. Fu, X. Han, and L. Ye, “Low-velocity impact response of composite sandwich structures: Modelling and experiment,” Compos Struct, vol. 168, pp. 322–334, 2017, doi: 10.1016/j.compstruct.2017.02.064.
  • [39] W. Shen, B. Luo, R. Yan, H. Zeng, and L. Xu, “The mechanical behavior of sandwich composite joints for ship structures,” Ocean Engineering, vol. 144, no. July, pp. 78–89, 2017, doi: 10.1016/j.oceaneng.2017.08.039.
  • [40] Y. Duan, Z. Cui, X. Xie, Y. Tie, T. Zou, and T. Wang, “Mechanical characteristics of composite honeycomb sandwich structures under oblique impact,” Theoretical and Applied Mechanics Letters, vol. 12, no. 5, p. 100379, Sep. 2022, doi: 10.1016/J.Taml.2022.100379.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katı Mekanik, Makine Mühendisliğinde Sayısal Yöntemler, Malzeme Tasarım ve Davranışları
Bölüm Makaleler
Yazarlar

İlyas Bozkurt 0000-0001-7850-2308

Yayımlanma Tarihi 23 Ekim 2024
Gönderilme Tarihi 3 Mayıs 2024
Kabul Tarihi 19 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Bozkurt, İ. (2024). Investigation of Low Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures with GFRP Face Sheets by Finite Element Method. Duzce University Journal of Science and Technology, 12(4), 2159-2184. https://doi.org/10.29130/dubited.1477434
AMA Bozkurt İ. Investigation of Low Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures with GFRP Face Sheets by Finite Element Method. DÜBİTED. Ekim 2024;12(4):2159-2184. doi:10.29130/dubited.1477434
Chicago Bozkurt, İlyas. “Investigation of Low Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures With GFRP Face Sheets by Finite Element Method”. Duzce University Journal of Science and Technology 12, sy. 4 (Ekim 2024): 2159-84. https://doi.org/10.29130/dubited.1477434.
EndNote Bozkurt İ (01 Ekim 2024) Investigation of Low Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures with GFRP Face Sheets by Finite Element Method. Duzce University Journal of Science and Technology 12 4 2159–2184.
IEEE İ. Bozkurt, “Investigation of Low Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures with GFRP Face Sheets by Finite Element Method”, DÜBİTED, c. 12, sy. 4, ss. 2159–2184, 2024, doi: 10.29130/dubited.1477434.
ISNAD Bozkurt, İlyas. “Investigation of Low Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures With GFRP Face Sheets by Finite Element Method”. Duzce University Journal of Science and Technology 12/4 (Ekim 2024), 2159-2184. https://doi.org/10.29130/dubited.1477434.
JAMA Bozkurt İ. Investigation of Low Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures with GFRP Face Sheets by Finite Element Method. DÜBİTED. 2024;12:2159–2184.
MLA Bozkurt, İlyas. “Investigation of Low Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures With GFRP Face Sheets by Finite Element Method”. Duzce University Journal of Science and Technology, c. 12, sy. 4, 2024, ss. 2159-84, doi:10.29130/dubited.1477434.
Vancouver Bozkurt İ. Investigation of Low Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures with GFRP Face Sheets by Finite Element Method. DÜBİTED. 2024;12(4):2159-84.