Araştırma Makalesi
BibTex RIS Kaynak Göster

Kuaterniyon Matrisleri ile Bazı Fibonacci ve Lucas Kuaterniyon Özdeşlikleri

Yıl 2019, Cilt: 7 Sayı: 1, 606 - 615, 31.01.2019
https://doi.org/10.29130/dubited.488122

Öz

Bu makalede en çok bilinen Fibonacci matrislerinden biri olan Q matrisi ve  Qn  n. Fibonacci kuaterniyonu olmak üzere MnQF Fibonacci kuaterniyon matrisi ele alınmıştır. Ayrıca bazı yeni kuaterniyon matrisleri tanımlanmıştır. Bu çalışmada terimleri Fibonacci ve Lucas kuaterniyonları olan yeni kuaterniyon matrislerini kullanarak, Fibonacci ve Lucas kuaterniyonları ile ilgili bazı özdeşlikler elde edilecektir. 

Kaynakça

  • [1] B. Demirtürk Bitim and N. Topal, “Quaternions via generalized Fibonacci and Lucas number components,” Mat. Rep., accepted 24.04.2017.
  • [2] S. Halıcı, “On Fibonacci quaternions”, Adv. Appl. Clifford Algebr., vol. 22, no. 2, pp. 321-327, 2012.
  • [3] S. Halıcı, “On complex Fibonacci quaternions,” Adv. Appl. Clifford Algebr., vol. 23, no. 1, pp.105-112, 2013.
  • [4] W. R. Hamilton, Elements of Quaternions, London, Longmans and Green, 1866.
  • [5] A. F. Horadam, “Complex Fibonacci numbers and Fibonacci quaternions,” Amer. Math. Monthly, vol. 70, pp. 289-291, 1963.
  • [6] A. F. Horadam, “Quaternion recurrence relations,” Ulam Quarterly, vol. 2, no. 2, pp. 23-33, 1993.
  • [7] M. R. Iyer, “Some results on Fibonacci quaternions”, Fibonacci Quart., vol. 7, pp. 201-210, 1969.
  • [8] R. Keskin, B. Demirtürk, “Some new Fibonacci and Lucas identities by matrix methods”, Internat. J. Math. Ed. Sci. Tech., vol. 41, no. 3, pp. 379-387, 2009.
  • [9] T. Koshy, Fibonacci and Lucas Numbers with Applications, New York, John Wiley & Sons, 2001.
  • [10] B. K. Patel and P. K. Ray, “On the properties of (p,q) -Fibonacci and (p,q) -Lucas quaternions,” Mat. Rep., vol. 21, no. 1, pp. 1-10, 2019.
  • [11] P. Ribenboim, My Numbers, My Friends, New York, Springer Verlag, 2000.
  • [12] S. Vajda, Fibonacci and Lucas Numbers and The Golden Section, Chichester, Ellis Horwood Limited Publ., 1989.

Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices

Yıl 2019, Cilt: 7 Sayı: 1, 606 - 615, 31.01.2019
https://doi.org/10.29130/dubited.488122

Öz

In this paper, we consider one of the most known
Fibonacci matrix  Q
 and the Fibonacci
quaternion matrix
  MQFn, where  Qn is the n-th Fibonacci quaternion.
In particular we define some new quaternion matrices. Our object is to derive
some identities concerning Fibonacci and Lucas quaternions by using some new
quaternion matrices with terms Fibonacci and Lucas numbers.










 

Kaynakça

  • [1] B. Demirtürk Bitim and N. Topal, “Quaternions via generalized Fibonacci and Lucas number components,” Mat. Rep., accepted 24.04.2017.
  • [2] S. Halıcı, “On Fibonacci quaternions”, Adv. Appl. Clifford Algebr., vol. 22, no. 2, pp. 321-327, 2012.
  • [3] S. Halıcı, “On complex Fibonacci quaternions,” Adv. Appl. Clifford Algebr., vol. 23, no. 1, pp.105-112, 2013.
  • [4] W. R. Hamilton, Elements of Quaternions, London, Longmans and Green, 1866.
  • [5] A. F. Horadam, “Complex Fibonacci numbers and Fibonacci quaternions,” Amer. Math. Monthly, vol. 70, pp. 289-291, 1963.
  • [6] A. F. Horadam, “Quaternion recurrence relations,” Ulam Quarterly, vol. 2, no. 2, pp. 23-33, 1993.
  • [7] M. R. Iyer, “Some results on Fibonacci quaternions”, Fibonacci Quart., vol. 7, pp. 201-210, 1969.
  • [8] R. Keskin, B. Demirtürk, “Some new Fibonacci and Lucas identities by matrix methods”, Internat. J. Math. Ed. Sci. Tech., vol. 41, no. 3, pp. 379-387, 2009.
  • [9] T. Koshy, Fibonacci and Lucas Numbers with Applications, New York, John Wiley & Sons, 2001.
  • [10] B. K. Patel and P. K. Ray, “On the properties of (p,q) -Fibonacci and (p,q) -Lucas quaternions,” Mat. Rep., vol. 21, no. 1, pp. 1-10, 2019.
  • [11] P. Ribenboim, My Numbers, My Friends, New York, Springer Verlag, 2000.
  • [12] S. Vajda, Fibonacci and Lucas Numbers and The Golden Section, Chichester, Ellis Horwood Limited Publ., 1989.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bahar Demirtürk Bitim

Yayımlanma Tarihi 31 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA Demirtürk Bitim, B. (2019). Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices. Duzce University Journal of Science and Technology, 7(1), 606-615. https://doi.org/10.29130/dubited.488122
AMA Demirtürk Bitim B. Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices. DÜBİTED. Ocak 2019;7(1):606-615. doi:10.29130/dubited.488122
Chicago Demirtürk Bitim, Bahar. “Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices”. Duzce University Journal of Science and Technology 7, sy. 1 (Ocak 2019): 606-15. https://doi.org/10.29130/dubited.488122.
EndNote Demirtürk Bitim B (01 Ocak 2019) Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices. Duzce University Journal of Science and Technology 7 1 606–615.
IEEE B. Demirtürk Bitim, “Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices”, DÜBİTED, c. 7, sy. 1, ss. 606–615, 2019, doi: 10.29130/dubited.488122.
ISNAD Demirtürk Bitim, Bahar. “Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices”. Duzce University Journal of Science and Technology 7/1 (Ocak 2019), 606-615. https://doi.org/10.29130/dubited.488122.
JAMA Demirtürk Bitim B. Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices. DÜBİTED. 2019;7:606–615.
MLA Demirtürk Bitim, Bahar. “Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices”. Duzce University Journal of Science and Technology, c. 7, sy. 1, 2019, ss. 606-15, doi:10.29130/dubited.488122.
Vancouver Demirtürk Bitim B. Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices. DÜBİTED. 2019;7(1):606-15.

Cited By

3x3 BOYUTLU ÖZEL PELL VE PELL LUCAS MATRİSLERİ
Düzce Üniversitesi Bilim ve Teknoloji Dergisi
Fikri KÖKEN
https://doi.org/10.29130/dubited.582108