Araştırma Makalesi
BibTex RIS Kaynak Göster

Durağan Olmayan Bir Kinetik Denklem İçin Bazı Düz ve Ters Problemler

Yıl 2023, Cilt: 11 Sayı: 2, 1014 - 1024, 30.04.2023
https://doi.org/10.29130/dubited.1095809

Öz

Bu çalışmada saçılım terimi içeren durağan olmayan bir kinetik denklem için bazı düz ve ters problemler ele alınmıştır. Bu problemlerin aralarındaki ilişki tartışılmış ve çözümlerinin tekliği araştırılmıştır.

Kaynakça

  • Yu. E. Anikonov, “Inverse Problems for Kinetic and other Evolution Equations,” De Gruyter, 2001.
  • A. K. Amirov, “Integral Geometry and Inverse Problems for Kinetic Equations,” VSP, Utrecht The Netherlands, 2001.
  • A. Kh. Amirov, “Uniqueness of the solution of an inverse problem for kinetic equation,” Sibirsk. Mat. Zh., vol. 28, no. 5, pp. 3-5, 1987.
  • F. Gölgeleyen, A. Amirov, “On the approximate solution of a coefficient inverse problem for the kinetic equation,” Mathematical Communications, vol. 16, no. 1, pp. 283-298, 2011.
  • M. M Lavrentiev, V.G. Romanov, and S. P. Shishatskii, “Ill-Posed Problems of Mathematical Physics and Analysis,” American Mathematical Society, Providence, 1986. V. G. Romanov, “Integral Geometry and Inverse Problems for Hyperbolic Equations,” Springer-Verlag, 1974.
  • J. Radon, “Über die Bestimmung von Funktionen durch ihre Integral-werte längs gewisser Mannigfaltigkeiten,” Berichte Sächsische Akademie der Wissenschaften, Leipzig, Math Nat kl. vol. 69, pp. 262–277, 1917.
  • J. F. John, “Bestimmung einer Funktion aus ihren Integralen über gewisse Mannigfaltigkeiten,” Mathematische Annalen, vol. 109, no. 1, pp. 488-520, 1934.
  • M. V. Klibanov, and A. A. Timonov, “Carleman Estimates for Coefficient Inverse Problems and Numerical Applications,” De Gruyter, 2012.
  • M. Bellassoued, and M. Yamamoto, “Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems,” Tokyo, Springer Japan, 2017.
  • V. Isakov, “Inverse Problems for Partial Differential Equations,” New York, Springer, vol. 127, 2016.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Elif Özsoy Çakır 0000-0001-6103-0367

Fikret Gölgeleyen 0000-0002-8059-2194

Yayımlanma Tarihi 30 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 2

Kaynak Göster

APA Özsoy Çakır, E., & Gölgeleyen, F. (2023). Durağan Olmayan Bir Kinetik Denklem İçin Bazı Düz ve Ters Problemler. Duzce University Journal of Science and Technology, 11(2), 1014-1024. https://doi.org/10.29130/dubited.1095809
AMA Özsoy Çakır E, Gölgeleyen F. Durağan Olmayan Bir Kinetik Denklem İçin Bazı Düz ve Ters Problemler. DÜBİTED. Nisan 2023;11(2):1014-1024. doi:10.29130/dubited.1095809
Chicago Özsoy Çakır, Elif, ve Fikret Gölgeleyen. “Durağan Olmayan Bir Kinetik Denklem İçin Bazı Düz Ve Ters Problemler”. Duzce University Journal of Science and Technology 11, sy. 2 (Nisan 2023): 1014-24. https://doi.org/10.29130/dubited.1095809.
EndNote Özsoy Çakır E, Gölgeleyen F (01 Nisan 2023) Durağan Olmayan Bir Kinetik Denklem İçin Bazı Düz ve Ters Problemler. Duzce University Journal of Science and Technology 11 2 1014–1024.
IEEE E. Özsoy Çakır ve F. Gölgeleyen, “Durağan Olmayan Bir Kinetik Denklem İçin Bazı Düz ve Ters Problemler”, DÜBİTED, c. 11, sy. 2, ss. 1014–1024, 2023, doi: 10.29130/dubited.1095809.
ISNAD Özsoy Çakır, Elif - Gölgeleyen, Fikret. “Durağan Olmayan Bir Kinetik Denklem İçin Bazı Düz Ve Ters Problemler”. Duzce University Journal of Science and Technology 11/2 (Nisan 2023), 1014-1024. https://doi.org/10.29130/dubited.1095809.
JAMA Özsoy Çakır E, Gölgeleyen F. Durağan Olmayan Bir Kinetik Denklem İçin Bazı Düz ve Ters Problemler. DÜBİTED. 2023;11:1014–1024.
MLA Özsoy Çakır, Elif ve Fikret Gölgeleyen. “Durağan Olmayan Bir Kinetik Denklem İçin Bazı Düz Ve Ters Problemler”. Duzce University Journal of Science and Technology, c. 11, sy. 2, 2023, ss. 1014-2, doi:10.29130/dubited.1095809.
Vancouver Özsoy Çakır E, Gölgeleyen F. Durağan Olmayan Bir Kinetik Denklem İçin Bazı Düz ve Ters Problemler. DÜBİTED. 2023;11(2):1014-2.