Derleme
BibTex RIS Kaynak Göster

Kahramanmaraş Depremlerinde Dolgu Duvar Hatalarının Belirlenmesi ve Performans Geliştirme Stratejileri

Yıl 2024, Cilt: 12 Sayı: 4, 1862 - 1878, 23.10.2024
https://doi.org/10.29130/dubited.1405720

Öz

Yapısal olmayan duvarlar, bölmeler oluşturmak ve estetik çekicilik sağlamak için kullanıldıklarından binalarda çok önemli bir rol oynamaktadırlar. Ancak deprem sırasındaki başarısızlıkları sürekli tekrarlanan bir sorun olmuştur. 6 Şubat 2023 Kahramanmaraş depremi sonucu konut, sanayi binaları ve özellikle hayati öneme sahip elektrik dağıtımını sağlayan trafo yapılarındaki dolgu duvarlarda hasarlar gözlemlendi. Bu makale, Kahramanmaraş'ta meydana gelen son depremlerden sonra yapılan saha araştırmalarının bulgularını, özellikle konut binalarının giriş-çıkışlarını kapatan ve özel önem taşıyan yapıların işlevselliğini kaybetmesine neden olan yapısal olmayan duvar göçmelerine odaklanmaktadır. Bu çalışma kapsamında dolgu duvar alanındaki sertifikasyon sürecindeki eksiklikler işçilik kusurlarının kökeni olarak görülmüştür. Sertifikasyon sürecindeki eksikliklere ve geleceğe yönelik sürecin iyileştirilmesine yönelik önerilerde bulunulmuştur. Dolgu duvarların düzlem dışı davranış sergileyerek can ve mal kaybına yol açması, göçen duvarlar nedeniyle kaçış yollarının kapanması istenmez. Günümüz teknolojisi ve mühendisliği ile dolgu duvarların enerji tüketim kapasitesini ve düzlem dışı davranışlarını olumlu yönde iyileştirmek mümkündür. Bu bağlamda detaylı bir literatür taraması yapılmış ve kullanılan farklı teknikler çalışmada irdelenmiştir. Buna ek olarak konu hakkında Türkiye'de yürürlükte olan mevzuata ilişkin açıklamalarda bulunulmuştur. Çalışma kapsamında, dolgu duvarların tasarımından üretimine kadar olan süreçte kullanılan mevzuat ve ulusal yeterliliklerin eşgüdümün önemine vurgu yapılmıştır.

Teşekkür

Yazarlar, editör ve hakemlere makalenin geliştirilmesine vercekleri katkıdan dolayı şimdiden teşekkürü bir borç bilir.

Kaynakça

  • [1] F. Braga, V. Manfredi, , A. Masi, A. Salvatori, and M. Vona, “Performance of non-structural elements in RC buildings during the L’Aquila, 2009 earthquake,” Bulletin of Earthquake Engineering, vol. 9, pp. 307-324, 2011.
  • [2] N. Achour, M. Miyajima, M. Kitaura, and A. Price, “Earthquake-induced structural and nonstructural damage in hospitals,” Earthquake spectra, vol. 27, no. 3, pp. 617-634, 2011.
  • [3] Y. Erbaş, Ö. Mercimek, Ö. Anıl, A. Çelik, S. T. Akkaya, İ. Kocaman, M. Gürbüz, “Design deficiencies, failure modes and recommendations for strengthening in reinforced concrete structures exposed to the February 6, 2023 Kahramanmaraş Earthquakes (Mw 7.7 and Mw 7.6),” Natural Hazards, 1-42pp, 2024.
  • [4] R. P. Dhakal, “Damage to non-structural components and contents in 2010 Darfield earthquake,” Bulletin of the New Zealand Society for Earthquake Engineering, vol. 43, no. 4, pp. 404-411, 2010.
  • [5] A. Penna, G. Mangenes, G. M. Calvi, and A. A. Costa, “Seismic performance of AAC infill and bearing walls with different reinforcement solutions,” Proceedings of the 14th International Brick and Block Masonry Conference. 2008.
  • [6] Turkish Statistical Institute, Rates of partition wall materials used in all building types between 2002 and 2016.
  • [7] C. Çakmak, “Experimental investigation of earthquake performances of modern and traditional partition walls,” M.S. thesis, Dept. Civil. Eng., Gazi University, Ankara, Türkiye, 2018.
  • [8] S. A. Kaplan, “Dolgu Duvarların Betonarme Taşıyıcı Sistem Performansına Etkisi,” TMH, vol. 452, pp. 49-62, 2008.
  • [9] E. Irtem, K. Turker, U. Hasgül, “Dolgu duvarlarının betonarme bina davranışına etkisi,” İTÜ Mühendislik Dergisi/d, vol. 4, no. 4, 2005.
  • [10] P. B. Shing, and B. M. Armin, “Behaviour and analysis of masonry‐infilled frames,” Progress in Structural Engineering and Materials, vol. 4, no. 3, pp. 320-331, 2002.
  • [11] H. Sucuoğlu, “Implications of masonry infill and partition damage in performance perception in residential buildings after a moderate earthquake,” Earthquake Spectra, vol. 29, pp. 661–667, 2013.
  • [12] M. Mohammadi, V. Akrami, R. Mohammadi-Ghazi, “Methods to improve infilled frame ductility,” Journal of Structural Engineering, vol. 137, pp. 646–53, 2011.
  • [13] M. Preti, N. Bettini, G. Plizzari, “Infill walls with sliding joints to limit infill-frame seismic interaction: large-scale experimental test,” Journal of Earthquake Engineering, vol. 16, pp. 125-141, 2012.
  • [14] M. C. Yılmaz, A. A. E. Finner, Ö. Mercimek, “Experimental investigation of out-of-plane behaviour of unreinforced masonry panels strengthened with TRM,” Structures, vol. 65, 106665, 2024.
  • [15] Disaster and Emergency Management Authority - AFAD, Ankara, Türkiye, 2023. (Available online: https://deprem.afad.gov.tr/assets/pdf/Kahramanmaras Depremleri Degerlendirme Raporu.pdf)
  • [16] IFRC, Operation update 2 – Türkiye Earthquake, Emergency Appeal No:MDRTR004 Situation Report. (Available online: https://reliefweb.int/attachments/Turkliye Earthquakes Operation Update-Emergency Appeal MDRTR004 21-04-2023.pdf)
  • [17] Ozdemir, A. “Examining the effect of structural characteristics of Antakya building stock on the damage level after the Kahramanmaraş earthquakes,” Journal of Earthquake Engineering, 1-30pp, 2024.
  • [18] P. Usta, “Investigation of Seismic Behavior of Buildings With Different Infill Wall Materials,” TJNS, vol. 11, no. 2, pp. 82–88, 2022.
  • [19] T. Çelik, and Ş. Tanrıverdi, “Farklı Çaplardaki Zıvanaların Kurşun İle Sabitlenmesinin Kayma Dayanımına Etkisi,” Avrupa Bilim ve Teknoloji Dergisi, vol. 24, pp. 24-29, 2021.
  • [20] Ş. Tanrıverdi, and T. Çelik, “Farklı Dolgu Malzemeleri ile Sabitlenen Zıvanaların Yığma Taş Blokların Kayma Dayanımına Etkisi,” Avrupa Bilim ve Teknoloji Dergisi, vol. 25, pp. 347-354, 2021.
  • [21] A. Yakut, H. Sucuoğlu, B. Binici, E. Canbay, C. Donmez, A. İlki, A. Caner, O. C. Celik, and B. Ö., Ay, “Performance of structures in İzmir after the Samos island earthquake,” Bull Earthquake Eng, vol. 20, pp. 7793–7818, 2022.
  • [22] A. Ural and T. Çelik, “Gaziantep nizip tahtani (leylek) cami yapısal analiz ve değerlendirmesi,” UUJFE, vol. 26, no. 1, pp. 79–96, 2021.
  • [23] S. Lester, “The European Qualifications Framework: a technical critique,” Res. Post-Compulsory Educ., vol. 20, no. 2, pp. 159–172, 2015.
  • [24] Europian Union, “Find and Compare Qualifications Frameworks – Europass,” (Available online: https://europa.eu/europass/en/compare-qualifications)
  • [25] CEDEFOP, “The dynamics of qualifications: defining and renewing occupational and educational standards,” 2009.
  • [26] Mesleki Yeterlilik Kurumu-MYK. “Ulusal meslek standardı tanımı ve içeriği,” (Available online: https://www.myk.gov.tr/page/19)
  • [27] CEDEFOP, “National qualifications framework developments in Europen countries: analysis and overview 2015-2016,” 2018.
  • [28] Mesleki Yeterlilik Kurumu-MYK, “Ulusal yeterlilik tanımı ve içeriği,” (Available online: https://www.myk.gov.tr/page/32)
  • [29] Mesleki Yeterlilik Kurumu-MYK, Duvarcı Ulusal Meslek Standardı 11UMS0157-3 Seviye 3 Rev.01. (Available online: https://portal.myk.gov.tr/index.php?option=com_meslek_std_taslak&view=taslak_revizyon&task=indir&id=4&standart_id=4765)
  • [30] F. Thomas, “The strength of brickwork,” Structural Engineering, vol. 31, pp. 35-46, 1953.
  • [31] E. L. McDowell, K.E. McKee, and E. Sevin, “Arching action theory of masonry walls,” Journal of the Structural Division, vol. 82.2, pp. 915-918, 1956.
  • [32] R. Angel, D. P. Abrams, D. Shapiro, J. Uzarski, and M. Webster, “Behavior of reinforced concrete frames with masonry infills,” Civil Engineering Studies, SRS-589, 1994.
  • [33] A. A. Costa, A. Penna, and G. Magenes. “Seismic performance of autoclaved aerated concrete (AAC) masonry: from experimental testing of the in-plane capacity of walls to building response simulation,” Journal of Earthquake Engineering, vol. 15, no. 1, pp. 1-31, 2011.
  • [34] A. Furtado, A. Arêde, H. Rodrigues, and H. Varum, “The role of the openings in the out-of-plane behaviour of masonry infill walls,” Engineering Structures, vol. 244, no. 112793, 2021.
  • [35] I. Faridmehr, M. L. Nehdi, A. N. Farokhi, and K. A. Valerievich, “Performance of partially grouted reinforced masonry walls with bed-joint reinforcement: parametric and optimization investigation,” Archiv.Civ.Mech.Eng, vol. 24, no. 2, 2024.
  • [36] S-H. Hwang S. Kim, K-H. Yang, “In-plane lateral load transfer capacity of unreinforced masonry walls considering presence of openings,” J Build Eng, vol. 47, no. 103868, 2022.
  • [37] K. C. Voon, and J. M. Ingham, “Experimental in-plane shear strength investigation of reinforced concrete masonry walls,” Journal of Structural Engineering, vol. 132, pp. 400–408, 2006.
  • [38] P. Shing, M. Schuller, and V. Hoskere, “In‐plane resistance of reinforced masonry shear walls,” Journal of Structural Engineering, vol. 116, pp. 619–640, 1990.
  • [39] K. C. Voon, “In-plane seismic design of concrete masonry structures,” M.S. thesis, University of Auckland, Auckland, New Zealand, 2007.
  • [40] M. Bolhassani, A. A. Hamid, and F. L. Moon, “Enhancement of lateral in-plane capacity of partially grouted concrete masonry shear walls,” Engineering Structures, vol. 108, pp. 59-76, 2016.
  • [41] M. Bolhassani, A. A. Hamid, C. Johnson, and A. E. Schultz, “Shear strength expression for partially grouted masonry walls,” Engineering Structures, vol. 127, pp. 475-494, 2016.
  • [42] ACI Committee 530, “Building code requirements for masonry structures. Reported by the Masonry Standards Joint Committee,” Boulder, CO: American Concrete Institute Farmington Hills, MI, 2005.
  • [43] CSA Standard S304.1, “Design of masonry structures,” Rexdale, ON: Canadian Standards Association, Canada, 2004.
  • [44] NZS 4230, “Design of reinforced concrete masonry structures,” Wellington: Standards Association of New Zealand, New Zealand, 2004.
  • [45] IMNC, “Normas Tecnicas Complementarias para Diseno y Construccion de Estructuras de Mamposteria (Technical Standards for Design and Construction of masonry structures),” Mexico, 2010.
  • [46] M. R. Valluzzi, D. V. Oliveira, A. Caratelli, et al., “Round Robin Test for composite-to-brick shear bond characterization,” Mater Struct, vol. 45, pp. 1761–1791, 2012.
  • [47] J. H. Elmapruk, “Shear strength of partially grouted squat masonry shear walls,” M.S. thesis, Washington State University, Washington, USA, 2010.
  • [48] V. G. Haach, G. Vasconcelos, and P. B. Lourenco, “Parametrical study of masonry walls subjected to in-plane loading through numerical modeling,” Engineering Structures, vol. 33, no. 4, pp. 1377–1389, 2011.
  • [49] S. M. Nolph, and M. A. ElGawady, “Static cyclic response of partially grouted masonry shear walls,” Journal of Structural Engineering, vol. 138, pp. 864–879, 2012.
  • [50] O. F. Halici, U. Demir, Y. Zabbar, and A. Ilki, “Out-of-plane seismic performance of bed-joint reinforced Autoclaved Aerated Concrete (AAC) infill walls damaged under cyclic in-plane displacement reversals,” Eng Struct. vol. 286, no. 116077, 2023.
  • [51] E. Manzoni, A. Dusi, M. Mezzi, “Polypmeric grid for a cost effective enhancement of the seismic performance of masonry buildings,” The 14th World Conference On Earthquake Engineering. Beijing, China, 2008.
  • [52] C. G. Papanicolaou, T. C. Triantafillou, M. Papathanasiou, K. Karlos, “Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: outof-plane cyclic Loading,” Materials and Structures, vol. 41, pp. 153-157, 2008.
  • [53] A. D'Ambrisi, M. Mezzi, A. Caporale, “Experimental investigation on polymeric net-RCM reinforced masonry panels,” Compos Struct, vol. 105, pp. 207-215, 2013.
  • [54] N. Ismail, J. M. Ingham, “In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar,” Engineering Structures, vol. 118, pp. 167-177, 2016.
  • [55] I. Carbone, “Delaminazione di compositi a matrice cementizia su supporti murari,” PhD thesis, Universita degli studi Roma TRE, Rome, Italy, 2010.
  • [56] CNR DT 200 R1/2013, “Guide for the design and construction of externally bonded FRP systems,” Rome, 2013.
  • [57] ACI 440.7R-10, “Guide for design and construction of externally bonded FRP systems for strengthening unreinforced masonry structures,” ACI Committee 440, 2010.
  • [58] R. Capozucca, “Effects of mortar layers in the delamination of GFRP bonded to historic masonry,” Compos Part B Eng, vol. 44, pp. 639-649, 2013.
  • [59] B. Binici, E. Canbay, A. Aldemir, I. O. Demirel, U. Uzgan, Z. Eryurtlu, and A. Yakut, “Seismic behavior and improvement of autoclaved aerated concrete infill walls,” Engineering Structures, vol. 193, pp. 68-81, 2019.
  • [60] Türkiye Disaster and Emergency Management Presidency-AFAD, “Turkey Building Earthquake Regulation-TBDY 2018,” Ankara, Türkiye, 2018.
  • [61] O. F. Bayrak, and M. Bikçe, “Dolgu duvar-betonarme çerçeve arası esnek derzli bağlantı çeşitlerinin araştırılması,” M.S. thesis, İskenderun Technical University, Hatay, Türkiye, 2020.

Identifying Infill Wall Failures in Kahramanmaraş Earthquakes and Strategies for Performance Improvement

Yıl 2024, Cilt: 12 Sayı: 4, 1862 - 1878, 23.10.2024
https://doi.org/10.29130/dubited.1405720

Öz

Non-structural walls play a very important role in buildings, as they are used to create partitions and provide aesthetic appeal. However, their failures during earthquakes have been a recurring issue. Damage to the infill walls that occurred due to the Kahramanmaraş earthquake on February 6, 2023, was observed in residential and industrial buildings and especially in transformer structures that provide vital electricity distribution. This article presents the findings of field surveys conducted in Kahramanmaraş after recent earthquakes, focusing on non-structural wall collapses that obstructed mainly residential building entrances-exits and structures of particular importance. Within the scope of this study, deficiencies in the certification process in the field of infill walls were seen as the root of workmanship defects. Recommendations were made for the deficiencies in the certification process and for improving the process for the future. Infill walls shouldn’t exhibit out-of-plane behavior, causing loss of life and property and for escape routes to be blocked due to falling walls. With today's technology and engineering, it is possible to positively improve the energy consumption capacity and out-of-plane behavior of infill walls. In this context, a detailed literature review was conducted, and the different techniques used were explained in the article. In addition, explanations were given regarding the force of regulation in Türkiye. Within the scope of the study, the compatibility of regulations and national qualifications in the direction from the design to the production of infill walls is revealed.

Kaynakça

  • [1] F. Braga, V. Manfredi, , A. Masi, A. Salvatori, and M. Vona, “Performance of non-structural elements in RC buildings during the L’Aquila, 2009 earthquake,” Bulletin of Earthquake Engineering, vol. 9, pp. 307-324, 2011.
  • [2] N. Achour, M. Miyajima, M. Kitaura, and A. Price, “Earthquake-induced structural and nonstructural damage in hospitals,” Earthquake spectra, vol. 27, no. 3, pp. 617-634, 2011.
  • [3] Y. Erbaş, Ö. Mercimek, Ö. Anıl, A. Çelik, S. T. Akkaya, İ. Kocaman, M. Gürbüz, “Design deficiencies, failure modes and recommendations for strengthening in reinforced concrete structures exposed to the February 6, 2023 Kahramanmaraş Earthquakes (Mw 7.7 and Mw 7.6),” Natural Hazards, 1-42pp, 2024.
  • [4] R. P. Dhakal, “Damage to non-structural components and contents in 2010 Darfield earthquake,” Bulletin of the New Zealand Society for Earthquake Engineering, vol. 43, no. 4, pp. 404-411, 2010.
  • [5] A. Penna, G. Mangenes, G. M. Calvi, and A. A. Costa, “Seismic performance of AAC infill and bearing walls with different reinforcement solutions,” Proceedings of the 14th International Brick and Block Masonry Conference. 2008.
  • [6] Turkish Statistical Institute, Rates of partition wall materials used in all building types between 2002 and 2016.
  • [7] C. Çakmak, “Experimental investigation of earthquake performances of modern and traditional partition walls,” M.S. thesis, Dept. Civil. Eng., Gazi University, Ankara, Türkiye, 2018.
  • [8] S. A. Kaplan, “Dolgu Duvarların Betonarme Taşıyıcı Sistem Performansına Etkisi,” TMH, vol. 452, pp. 49-62, 2008.
  • [9] E. Irtem, K. Turker, U. Hasgül, “Dolgu duvarlarının betonarme bina davranışına etkisi,” İTÜ Mühendislik Dergisi/d, vol. 4, no. 4, 2005.
  • [10] P. B. Shing, and B. M. Armin, “Behaviour and analysis of masonry‐infilled frames,” Progress in Structural Engineering and Materials, vol. 4, no. 3, pp. 320-331, 2002.
  • [11] H. Sucuoğlu, “Implications of masonry infill and partition damage in performance perception in residential buildings after a moderate earthquake,” Earthquake Spectra, vol. 29, pp. 661–667, 2013.
  • [12] M. Mohammadi, V. Akrami, R. Mohammadi-Ghazi, “Methods to improve infilled frame ductility,” Journal of Structural Engineering, vol. 137, pp. 646–53, 2011.
  • [13] M. Preti, N. Bettini, G. Plizzari, “Infill walls with sliding joints to limit infill-frame seismic interaction: large-scale experimental test,” Journal of Earthquake Engineering, vol. 16, pp. 125-141, 2012.
  • [14] M. C. Yılmaz, A. A. E. Finner, Ö. Mercimek, “Experimental investigation of out-of-plane behaviour of unreinforced masonry panels strengthened with TRM,” Structures, vol. 65, 106665, 2024.
  • [15] Disaster and Emergency Management Authority - AFAD, Ankara, Türkiye, 2023. (Available online: https://deprem.afad.gov.tr/assets/pdf/Kahramanmaras Depremleri Degerlendirme Raporu.pdf)
  • [16] IFRC, Operation update 2 – Türkiye Earthquake, Emergency Appeal No:MDRTR004 Situation Report. (Available online: https://reliefweb.int/attachments/Turkliye Earthquakes Operation Update-Emergency Appeal MDRTR004 21-04-2023.pdf)
  • [17] Ozdemir, A. “Examining the effect of structural characteristics of Antakya building stock on the damage level after the Kahramanmaraş earthquakes,” Journal of Earthquake Engineering, 1-30pp, 2024.
  • [18] P. Usta, “Investigation of Seismic Behavior of Buildings With Different Infill Wall Materials,” TJNS, vol. 11, no. 2, pp. 82–88, 2022.
  • [19] T. Çelik, and Ş. Tanrıverdi, “Farklı Çaplardaki Zıvanaların Kurşun İle Sabitlenmesinin Kayma Dayanımına Etkisi,” Avrupa Bilim ve Teknoloji Dergisi, vol. 24, pp. 24-29, 2021.
  • [20] Ş. Tanrıverdi, and T. Çelik, “Farklı Dolgu Malzemeleri ile Sabitlenen Zıvanaların Yığma Taş Blokların Kayma Dayanımına Etkisi,” Avrupa Bilim ve Teknoloji Dergisi, vol. 25, pp. 347-354, 2021.
  • [21] A. Yakut, H. Sucuoğlu, B. Binici, E. Canbay, C. Donmez, A. İlki, A. Caner, O. C. Celik, and B. Ö., Ay, “Performance of structures in İzmir after the Samos island earthquake,” Bull Earthquake Eng, vol. 20, pp. 7793–7818, 2022.
  • [22] A. Ural and T. Çelik, “Gaziantep nizip tahtani (leylek) cami yapısal analiz ve değerlendirmesi,” UUJFE, vol. 26, no. 1, pp. 79–96, 2021.
  • [23] S. Lester, “The European Qualifications Framework: a technical critique,” Res. Post-Compulsory Educ., vol. 20, no. 2, pp. 159–172, 2015.
  • [24] Europian Union, “Find and Compare Qualifications Frameworks – Europass,” (Available online: https://europa.eu/europass/en/compare-qualifications)
  • [25] CEDEFOP, “The dynamics of qualifications: defining and renewing occupational and educational standards,” 2009.
  • [26] Mesleki Yeterlilik Kurumu-MYK. “Ulusal meslek standardı tanımı ve içeriği,” (Available online: https://www.myk.gov.tr/page/19)
  • [27] CEDEFOP, “National qualifications framework developments in Europen countries: analysis and overview 2015-2016,” 2018.
  • [28] Mesleki Yeterlilik Kurumu-MYK, “Ulusal yeterlilik tanımı ve içeriği,” (Available online: https://www.myk.gov.tr/page/32)
  • [29] Mesleki Yeterlilik Kurumu-MYK, Duvarcı Ulusal Meslek Standardı 11UMS0157-3 Seviye 3 Rev.01. (Available online: https://portal.myk.gov.tr/index.php?option=com_meslek_std_taslak&view=taslak_revizyon&task=indir&id=4&standart_id=4765)
  • [30] F. Thomas, “The strength of brickwork,” Structural Engineering, vol. 31, pp. 35-46, 1953.
  • [31] E. L. McDowell, K.E. McKee, and E. Sevin, “Arching action theory of masonry walls,” Journal of the Structural Division, vol. 82.2, pp. 915-918, 1956.
  • [32] R. Angel, D. P. Abrams, D. Shapiro, J. Uzarski, and M. Webster, “Behavior of reinforced concrete frames with masonry infills,” Civil Engineering Studies, SRS-589, 1994.
  • [33] A. A. Costa, A. Penna, and G. Magenes. “Seismic performance of autoclaved aerated concrete (AAC) masonry: from experimental testing of the in-plane capacity of walls to building response simulation,” Journal of Earthquake Engineering, vol. 15, no. 1, pp. 1-31, 2011.
  • [34] A. Furtado, A. Arêde, H. Rodrigues, and H. Varum, “The role of the openings in the out-of-plane behaviour of masonry infill walls,” Engineering Structures, vol. 244, no. 112793, 2021.
  • [35] I. Faridmehr, M. L. Nehdi, A. N. Farokhi, and K. A. Valerievich, “Performance of partially grouted reinforced masonry walls with bed-joint reinforcement: parametric and optimization investigation,” Archiv.Civ.Mech.Eng, vol. 24, no. 2, 2024.
  • [36] S-H. Hwang S. Kim, K-H. Yang, “In-plane lateral load transfer capacity of unreinforced masonry walls considering presence of openings,” J Build Eng, vol. 47, no. 103868, 2022.
  • [37] K. C. Voon, and J. M. Ingham, “Experimental in-plane shear strength investigation of reinforced concrete masonry walls,” Journal of Structural Engineering, vol. 132, pp. 400–408, 2006.
  • [38] P. Shing, M. Schuller, and V. Hoskere, “In‐plane resistance of reinforced masonry shear walls,” Journal of Structural Engineering, vol. 116, pp. 619–640, 1990.
  • [39] K. C. Voon, “In-plane seismic design of concrete masonry structures,” M.S. thesis, University of Auckland, Auckland, New Zealand, 2007.
  • [40] M. Bolhassani, A. A. Hamid, and F. L. Moon, “Enhancement of lateral in-plane capacity of partially grouted concrete masonry shear walls,” Engineering Structures, vol. 108, pp. 59-76, 2016.
  • [41] M. Bolhassani, A. A. Hamid, C. Johnson, and A. E. Schultz, “Shear strength expression for partially grouted masonry walls,” Engineering Structures, vol. 127, pp. 475-494, 2016.
  • [42] ACI Committee 530, “Building code requirements for masonry structures. Reported by the Masonry Standards Joint Committee,” Boulder, CO: American Concrete Institute Farmington Hills, MI, 2005.
  • [43] CSA Standard S304.1, “Design of masonry structures,” Rexdale, ON: Canadian Standards Association, Canada, 2004.
  • [44] NZS 4230, “Design of reinforced concrete masonry structures,” Wellington: Standards Association of New Zealand, New Zealand, 2004.
  • [45] IMNC, “Normas Tecnicas Complementarias para Diseno y Construccion de Estructuras de Mamposteria (Technical Standards for Design and Construction of masonry structures),” Mexico, 2010.
  • [46] M. R. Valluzzi, D. V. Oliveira, A. Caratelli, et al., “Round Robin Test for composite-to-brick shear bond characterization,” Mater Struct, vol. 45, pp. 1761–1791, 2012.
  • [47] J. H. Elmapruk, “Shear strength of partially grouted squat masonry shear walls,” M.S. thesis, Washington State University, Washington, USA, 2010.
  • [48] V. G. Haach, G. Vasconcelos, and P. B. Lourenco, “Parametrical study of masonry walls subjected to in-plane loading through numerical modeling,” Engineering Structures, vol. 33, no. 4, pp. 1377–1389, 2011.
  • [49] S. M. Nolph, and M. A. ElGawady, “Static cyclic response of partially grouted masonry shear walls,” Journal of Structural Engineering, vol. 138, pp. 864–879, 2012.
  • [50] O. F. Halici, U. Demir, Y. Zabbar, and A. Ilki, “Out-of-plane seismic performance of bed-joint reinforced Autoclaved Aerated Concrete (AAC) infill walls damaged under cyclic in-plane displacement reversals,” Eng Struct. vol. 286, no. 116077, 2023.
  • [51] E. Manzoni, A. Dusi, M. Mezzi, “Polypmeric grid for a cost effective enhancement of the seismic performance of masonry buildings,” The 14th World Conference On Earthquake Engineering. Beijing, China, 2008.
  • [52] C. G. Papanicolaou, T. C. Triantafillou, M. Papathanasiou, K. Karlos, “Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: outof-plane cyclic Loading,” Materials and Structures, vol. 41, pp. 153-157, 2008.
  • [53] A. D'Ambrisi, M. Mezzi, A. Caporale, “Experimental investigation on polymeric net-RCM reinforced masonry panels,” Compos Struct, vol. 105, pp. 207-215, 2013.
  • [54] N. Ismail, J. M. Ingham, “In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar,” Engineering Structures, vol. 118, pp. 167-177, 2016.
  • [55] I. Carbone, “Delaminazione di compositi a matrice cementizia su supporti murari,” PhD thesis, Universita degli studi Roma TRE, Rome, Italy, 2010.
  • [56] CNR DT 200 R1/2013, “Guide for the design and construction of externally bonded FRP systems,” Rome, 2013.
  • [57] ACI 440.7R-10, “Guide for design and construction of externally bonded FRP systems for strengthening unreinforced masonry structures,” ACI Committee 440, 2010.
  • [58] R. Capozucca, “Effects of mortar layers in the delamination of GFRP bonded to historic masonry,” Compos Part B Eng, vol. 44, pp. 639-649, 2013.
  • [59] B. Binici, E. Canbay, A. Aldemir, I. O. Demirel, U. Uzgan, Z. Eryurtlu, and A. Yakut, “Seismic behavior and improvement of autoclaved aerated concrete infill walls,” Engineering Structures, vol. 193, pp. 68-81, 2019.
  • [60] Türkiye Disaster and Emergency Management Presidency-AFAD, “Turkey Building Earthquake Regulation-TBDY 2018,” Ankara, Türkiye, 2018.
  • [61] O. F. Bayrak, and M. Bikçe, “Dolgu duvar-betonarme çerçeve arası esnek derzli bağlantı çeşitlerinin araştırılması,” M.S. thesis, İskenderun Technical University, Hatay, Türkiye, 2020.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deprem Mühendisliği, Yapı Malzemeleri, Yapım Teknolojileri, İnşaat Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Anıl Özdemir 0000-0001-6563-5144

Coşkun Çakmak 0000-0002-8138-272X

Yayımlanma Tarihi 23 Ekim 2024
Gönderilme Tarihi 16 Aralık 2023
Kabul Tarihi 26 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 4

Kaynak Göster

APA Özdemir, A., & Çakmak, C. (2024). Identifying Infill Wall Failures in Kahramanmaraş Earthquakes and Strategies for Performance Improvement. Duzce University Journal of Science and Technology, 12(4), 1862-1878. https://doi.org/10.29130/dubited.1405720
AMA Özdemir A, Çakmak C. Identifying Infill Wall Failures in Kahramanmaraş Earthquakes and Strategies for Performance Improvement. DÜBİTED. Ekim 2024;12(4):1862-1878. doi:10.29130/dubited.1405720
Chicago Özdemir, Anıl, ve Coşkun Çakmak. “Identifying Infill Wall Failures in Kahramanmaraş Earthquakes and Strategies for Performance Improvement”. Duzce University Journal of Science and Technology 12, sy. 4 (Ekim 2024): 1862-78. https://doi.org/10.29130/dubited.1405720.
EndNote Özdemir A, Çakmak C (01 Ekim 2024) Identifying Infill Wall Failures in Kahramanmaraş Earthquakes and Strategies for Performance Improvement. Duzce University Journal of Science and Technology 12 4 1862–1878.
IEEE A. Özdemir ve C. Çakmak, “Identifying Infill Wall Failures in Kahramanmaraş Earthquakes and Strategies for Performance Improvement”, DÜBİTED, c. 12, sy. 4, ss. 1862–1878, 2024, doi: 10.29130/dubited.1405720.
ISNAD Özdemir, Anıl - Çakmak, Coşkun. “Identifying Infill Wall Failures in Kahramanmaraş Earthquakes and Strategies for Performance Improvement”. Duzce University Journal of Science and Technology 12/4 (Ekim 2024), 1862-1878. https://doi.org/10.29130/dubited.1405720.
JAMA Özdemir A, Çakmak C. Identifying Infill Wall Failures in Kahramanmaraş Earthquakes and Strategies for Performance Improvement. DÜBİTED. 2024;12:1862–1878.
MLA Özdemir, Anıl ve Coşkun Çakmak. “Identifying Infill Wall Failures in Kahramanmaraş Earthquakes and Strategies for Performance Improvement”. Duzce University Journal of Science and Technology, c. 12, sy. 4, 2024, ss. 1862-78, doi:10.29130/dubited.1405720.
Vancouver Özdemir A, Çakmak C. Identifying Infill Wall Failures in Kahramanmaraş Earthquakes and Strategies for Performance Improvement. DÜBİTED. 2024;12(4):1862-78.