Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of the Wall Thickness of the Material Loaded Cavity On the RCS Reduction

Yıl 2024, Cilt: 12 Sayı: 4, 2330 - 2348, 23.10.2024
https://doi.org/10.29130/dubited.1527024

Öz

In this paper, the effect of a parallel plate waveguide's wall thickness on radar cross-section reduction (RCS) is rigorously analyzed for H-polarization by using the Wiener-Hopf Technique, when the waveguide region is loaded with dielectric material and terminated with a perfect electric conductor (PEC) plate. Transfer matrices are incorporated into the analysis to account for the effect of different material layers through continuity relations. The Fourier transforms of the diffracted field and the boundary conditions yield a modified scalar Wiener-Hopf equation of the second kind (MWHE-2). The classical procedure to solve the MWHE-2 is applied and the approximate expression of the diffracted far field is obtained. Numerical results are given by comparing with the results available in the literature for the case of the wall thickness of the cavity not being considered.

Kaynakça

  • [1] C. Lee and S.-W. Lee, “RCS of a coated circular waveguide terminated by a perfect conductor,” IEEE Transactions on Antennas and Propagation, vol. 35, no. 4, pp. 391-398, 1987.
  • [2] A. Altintas, P. H. Pathak and M.-C. Liang, “A selective modal scheme for the analysis of EM coupling into or radiation from large open-ended waveguides,” IEEE Transactions on Antennas and Propagation, vol. 36, no. 1, pp. 84-96, 1988.
  • [3] N. N. Youssef, “Radar cross-section of complex targets,” Proceedings of the IEEE, vol. 77, no. 5, pp. 722-734, 1989.
  • [4] W. R. Stone, Radar Cross-Sections of Complex Objects, New York: IEEE Press, 1990.
  • [5] A. Demir, A. Büyükaksoy and B. Polat, “Diffraction of plane sound waves by a rigid circular cylindrical cavity with an acoustically absorbing internal surface,” ZAMM Z. Angew. Math. Mech., vol. 82, no. 9, pp. 619-629, 2002.
  • [6] Y.-D. Kim, H. Lim, J.-H. Han, W.-Y. Song, and N.-H. Myung, “RCS reduction of open-ended circular waveguide cavity with corrugations using mode matching and scattering matrix analysis,” Progress in Electromagnetics Research, vol. 146, pp. 57-69, 2014.
  • [7] G. Bao and J. Lai, “Optimal shape design of a cavity for radar cross-section reduction,” SIAM Journal on Control and Optimization, vol. 52, no.4, pp. 2122-2140, 2014.
  • [8] B. Tiryakioglu and A. Demir, “Radiation analysis of sound waves from semi-infinite coated pipe,” International Journal of Aeroacoustics, vol. 18, no. 1, pp. 92-111, 2019.
  • [9] P. H. Pathak and R. J. Burkholder, “Modal, ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 5, pp. 635-647, 1989.
  • [10] H. Ling, S.-W. Lee and R.-C. Chou, “High-frequency RCS of open cavities with rectangular and circular cross-sections,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 5, pp. 648-654, 1989.
  • [11] G. Bao and J. Lai, “Radar cross-section seduction of a cavity in the ground plane,” Communications in Computational Physics, vol. 15, no.4, pp. 895-910, 2014.
  • [12] E. Vinogradova, “Electromagnetic plane wave scattering by arbitrary two-dimensional cavities: Rigorous approach,” Wave Motion, vol. 70, pp. 47-64, 2017.
  • [13] Y. Zhou, et al. “Broadband RCS reduction for electrically-large open-ended cavity using random coding metasurfaces,” Journal of Physics D: Applied Physics, vol. 52, 2019.
  • [14] S. Koshikawa, D. Colak, A. Altintas, K. Kobayashi, and A.I. Nosich, “A comparative study of RCS predictions of canonical rectangular and circular cavities with double-layer material loading,” IEICE Transactions on Electronics, vol. E80-C, no.11, pp. 1457–1466, 1997.
  • [15] K. Kobayashi and A. Sawai, “Plane wave diffraction by an open-ended parallel plate waveguide cavity,” Journal of Electromagnetic Waves and Applications, vol. 6, no.1-4, pp. 475–512, 1992.
  • [16] K. Kobayashi, S. Koshikawa, and A. Sawai, “Diffraction by a parallel-plate waveguide cavity with dielectric/ferrite loading: Part I - The case of E polarization,” Progress in Electromagnetics Research, vol. 8, pp. 377-426, 1994.
  • [17] S. Koshikawa and K. Kobayashi, “Diffraction by a parallel-plate waveguide cavity with dielectric/ferrite loading: Part II - The case of H polarization,” Progress in Electromagnetics Research, vol. 8, pp. 427–458, 1994.
  • [18] J.P. Zheng and K. Kobayashi, “Plane wave diffraction by a finite parallel-plate waveguide with four-layer material loading: Part I - The case of E polarization,” Progress in Electromagnetics Research B, vol. 6, pp. 1–36, 2008.
  • [19] E.H. Shang and K. Kobayashi, “Plane wave diffraction by a finite parallel-plate waveguide with four-layer material loading: Part II - The case of H polarization,” Progress in Electromagnetics Research B, vol. 6, pp. 267–294, 2008.
  • [20] S. Koshikawa and K. Kobayashi, “Diffraction by a terminated semi-infinite parallel-plate waveguide with three-layer material loading,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 6, pp. 949-959, 1997
  • [21] S. Koshikawa and K. Kobayashi, “Diffraction by a terminated, semi-infinite parallel-plate waveguide with three-layer material loading: The case of H polarization,” Telecommunications and Radio Engineering, vol. 54, no. 3, pp. 13–23, 2000.
  • [22] A. Büyükaksoy and B. Polat, “Plane wave diffraction by a thick-walled parallel-plate impedance waveguide,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 11, pp. 1692-1699, 1998.
  • [23] M. Dumanli, “Diffraction by a terminated semi-infinite parallel plate waveguide with two-layer material loading and impedance boundaries,” Progress in Electromagnetics Research, vol. 45, pp. 77-102, 2004.
  • [24] E.H. Shang and K. Kobayashi, “Diffraction by a terminated, semi-infinite parallel-plate waveguide with four-layer material loading: The case of H polarization,” Progress in Electromagnetics Research B, vol. 12, pp. 139–162, 2009.
  • [25] K. He and K. Kobayashi, “Diffraction by a semi-infinite parallel-plate waveguide with five-layer material loading: The case of H-polarization,” Applied Sciences, vol. 13, no. 6, pp. 3715, 2023.
  • [26] R. Mittra and S.-W. Lee, Analytical Techniques in the Theory of Guided Waves, New York: Macmillan, 1971.

Dielektrik Malzeme Yüklü Paralel Plaka Dalga Kılavuzu Duvar Kalınlığının RCS Azaltılmasına Etkisi

Yıl 2024, Cilt: 12 Sayı: 4, 2330 - 2348, 23.10.2024
https://doi.org/10.29130/dubited.1527024

Öz

Bu çalışmada, paralel plaka dalga kılavuzunun duvar kalınlığının radar kesit alanının azalmasına (RCS) etkisi, dalga kılavuzu bölgesi dielektrik malzeme ile yüklendiğinde ve mükemmel iletken (PEC) bir levha ile sonlandırıldığında H-polarizasyonu için Wiener-Hopf Tekniği kullanılarak titizlikle analiz edilmiştir. Süreklilik bağıntıları kullanılırken, farklı malzeme katmanlarının etkisini hesaba katmak için transfer matrisleri analize dahil edilir. Kırınan alanın Fourier dönüşümünün ve sınır koşullarının kullanılması, ikinci türden değiştirilmiş bir skaler Wiener-Hopf denklemini (MWHE-2) verir. MWHE-2'yi çözmek için klasik prosedür uygulanır ve kırınıma uğrayan uzak alanın yaklaşık ifadesi elde edilir. Sayısal sonuçlar, literatürde mevcut olan paralel plaka dalga kılavuzunun duvar kalınlığının dikkate alınmadığı durumdaki sonuçlarla karşılaştırılarak verilmiştir.

Kaynakça

  • [1] C. Lee and S.-W. Lee, “RCS of a coated circular waveguide terminated by a perfect conductor,” IEEE Transactions on Antennas and Propagation, vol. 35, no. 4, pp. 391-398, 1987.
  • [2] A. Altintas, P. H. Pathak and M.-C. Liang, “A selective modal scheme for the analysis of EM coupling into or radiation from large open-ended waveguides,” IEEE Transactions on Antennas and Propagation, vol. 36, no. 1, pp. 84-96, 1988.
  • [3] N. N. Youssef, “Radar cross-section of complex targets,” Proceedings of the IEEE, vol. 77, no. 5, pp. 722-734, 1989.
  • [4] W. R. Stone, Radar Cross-Sections of Complex Objects, New York: IEEE Press, 1990.
  • [5] A. Demir, A. Büyükaksoy and B. Polat, “Diffraction of plane sound waves by a rigid circular cylindrical cavity with an acoustically absorbing internal surface,” ZAMM Z. Angew. Math. Mech., vol. 82, no. 9, pp. 619-629, 2002.
  • [6] Y.-D. Kim, H. Lim, J.-H. Han, W.-Y. Song, and N.-H. Myung, “RCS reduction of open-ended circular waveguide cavity with corrugations using mode matching and scattering matrix analysis,” Progress in Electromagnetics Research, vol. 146, pp. 57-69, 2014.
  • [7] G. Bao and J. Lai, “Optimal shape design of a cavity for radar cross-section reduction,” SIAM Journal on Control and Optimization, vol. 52, no.4, pp. 2122-2140, 2014.
  • [8] B. Tiryakioglu and A. Demir, “Radiation analysis of sound waves from semi-infinite coated pipe,” International Journal of Aeroacoustics, vol. 18, no. 1, pp. 92-111, 2019.
  • [9] P. H. Pathak and R. J. Burkholder, “Modal, ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 5, pp. 635-647, 1989.
  • [10] H. Ling, S.-W. Lee and R.-C. Chou, “High-frequency RCS of open cavities with rectangular and circular cross-sections,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 5, pp. 648-654, 1989.
  • [11] G. Bao and J. Lai, “Radar cross-section seduction of a cavity in the ground plane,” Communications in Computational Physics, vol. 15, no.4, pp. 895-910, 2014.
  • [12] E. Vinogradova, “Electromagnetic plane wave scattering by arbitrary two-dimensional cavities: Rigorous approach,” Wave Motion, vol. 70, pp. 47-64, 2017.
  • [13] Y. Zhou, et al. “Broadband RCS reduction for electrically-large open-ended cavity using random coding metasurfaces,” Journal of Physics D: Applied Physics, vol. 52, 2019.
  • [14] S. Koshikawa, D. Colak, A. Altintas, K. Kobayashi, and A.I. Nosich, “A comparative study of RCS predictions of canonical rectangular and circular cavities with double-layer material loading,” IEICE Transactions on Electronics, vol. E80-C, no.11, pp. 1457–1466, 1997.
  • [15] K. Kobayashi and A. Sawai, “Plane wave diffraction by an open-ended parallel plate waveguide cavity,” Journal of Electromagnetic Waves and Applications, vol. 6, no.1-4, pp. 475–512, 1992.
  • [16] K. Kobayashi, S. Koshikawa, and A. Sawai, “Diffraction by a parallel-plate waveguide cavity with dielectric/ferrite loading: Part I - The case of E polarization,” Progress in Electromagnetics Research, vol. 8, pp. 377-426, 1994.
  • [17] S. Koshikawa and K. Kobayashi, “Diffraction by a parallel-plate waveguide cavity with dielectric/ferrite loading: Part II - The case of H polarization,” Progress in Electromagnetics Research, vol. 8, pp. 427–458, 1994.
  • [18] J.P. Zheng and K. Kobayashi, “Plane wave diffraction by a finite parallel-plate waveguide with four-layer material loading: Part I - The case of E polarization,” Progress in Electromagnetics Research B, vol. 6, pp. 1–36, 2008.
  • [19] E.H. Shang and K. Kobayashi, “Plane wave diffraction by a finite parallel-plate waveguide with four-layer material loading: Part II - The case of H polarization,” Progress in Electromagnetics Research B, vol. 6, pp. 267–294, 2008.
  • [20] S. Koshikawa and K. Kobayashi, “Diffraction by a terminated semi-infinite parallel-plate waveguide with three-layer material loading,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 6, pp. 949-959, 1997
  • [21] S. Koshikawa and K. Kobayashi, “Diffraction by a terminated, semi-infinite parallel-plate waveguide with three-layer material loading: The case of H polarization,” Telecommunications and Radio Engineering, vol. 54, no. 3, pp. 13–23, 2000.
  • [22] A. Büyükaksoy and B. Polat, “Plane wave diffraction by a thick-walled parallel-plate impedance waveguide,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 11, pp. 1692-1699, 1998.
  • [23] M. Dumanli, “Diffraction by a terminated semi-infinite parallel plate waveguide with two-layer material loading and impedance boundaries,” Progress in Electromagnetics Research, vol. 45, pp. 77-102, 2004.
  • [24] E.H. Shang and K. Kobayashi, “Diffraction by a terminated, semi-infinite parallel-plate waveguide with four-layer material loading: The case of H polarization,” Progress in Electromagnetics Research B, vol. 12, pp. 139–162, 2009.
  • [25] K. He and K. Kobayashi, “Diffraction by a semi-infinite parallel-plate waveguide with five-layer material loading: The case of H-polarization,” Applied Sciences, vol. 13, no. 6, pp. 3715, 2023.
  • [26] R. Mittra and S.-W. Lee, Analytical Techniques in the Theory of Guided Waves, New York: Macmillan, 1971.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Elektromanyetiği, Elektrik Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Oğuzhan Demiryürek 0000-0003-3680-672X

Filiz Birbir Ünal Bu kişi benim 0000-0002-2993-4419

Yayımlanma Tarihi 23 Ekim 2024
Gönderilme Tarihi 2 Ağustos 2024
Kabul Tarihi 28 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 4

Kaynak Göster

APA Demiryürek, O., & Birbir Ünal, F. (2024). The Effect of the Wall Thickness of the Material Loaded Cavity On the RCS Reduction. Duzce University Journal of Science and Technology, 12(4), 2330-2348. https://doi.org/10.29130/dubited.1527024
AMA Demiryürek O, Birbir Ünal F. The Effect of the Wall Thickness of the Material Loaded Cavity On the RCS Reduction. DÜBİTED. Ekim 2024;12(4):2330-2348. doi:10.29130/dubited.1527024
Chicago Demiryürek, Oğuzhan, ve Filiz Birbir Ünal. “The Effect of the Wall Thickness of the Material Loaded Cavity On the RCS Reduction”. Duzce University Journal of Science and Technology 12, sy. 4 (Ekim 2024): 2330-48. https://doi.org/10.29130/dubited.1527024.
EndNote Demiryürek O, Birbir Ünal F (01 Ekim 2024) The Effect of the Wall Thickness of the Material Loaded Cavity On the RCS Reduction. Duzce University Journal of Science and Technology 12 4 2330–2348.
IEEE O. Demiryürek ve F. Birbir Ünal, “The Effect of the Wall Thickness of the Material Loaded Cavity On the RCS Reduction”, DÜBİTED, c. 12, sy. 4, ss. 2330–2348, 2024, doi: 10.29130/dubited.1527024.
ISNAD Demiryürek, Oğuzhan - Birbir Ünal, Filiz. “The Effect of the Wall Thickness of the Material Loaded Cavity On the RCS Reduction”. Duzce University Journal of Science and Technology 12/4 (Ekim 2024), 2330-2348. https://doi.org/10.29130/dubited.1527024.
JAMA Demiryürek O, Birbir Ünal F. The Effect of the Wall Thickness of the Material Loaded Cavity On the RCS Reduction. DÜBİTED. 2024;12:2330–2348.
MLA Demiryürek, Oğuzhan ve Filiz Birbir Ünal. “The Effect of the Wall Thickness of the Material Loaded Cavity On the RCS Reduction”. Duzce University Journal of Science and Technology, c. 12, sy. 4, 2024, ss. 2330-48, doi:10.29130/dubited.1527024.
Vancouver Demiryürek O, Birbir Ünal F. The Effect of the Wall Thickness of the Material Loaded Cavity On the RCS Reduction. DÜBİTED. 2024;12(4):2330-48.