Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical Solutions of Fractional Order Ratio-Dependent Food Chain Model with Caputo Derivative

Yıl 2025, Cilt: 13 Sayı: 4, 1544 - 1555, 30.10.2025
https://doi.org/10.29130/dubited.1600292

Öz

The study of life within an ecosystem reveals a complex system. Ecosystems are characterised by the presence of all the elements that give rise to chaotic dynamics. Although chaos is often predicted by mathematical models, there is currently only limited evidence of its existence in nature, with the proof of its occurrence remaining scarce and uncertain. Despite the apparent simplicity of food chains, they exhibit highly complex dynamics. Models created several years ago have confirmed that food chains have complex dynamics. In this study, a fractional order ratio-dependent food chain model is considered. This model consists of three compartments: prey population density (𝑋), predator population density (𝑌) and top predator density (𝑍). The fractional derivative is employed in accordance with the Caputo sense. A mathematical analysis of the fractional order ratio-dependent food chain model is conducted. Numerical results are obtained with the aid of the Euler method and the graphs are interpreted.

Etik Beyan

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

Kaynakça

  • Arditi, R., & Ginzburg, L. R. (1989). Coupling in predator-prey dynamics: Ratio-dependence. Journal of Theoretical Biology, 139(3), 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
  • Berryman, A. A., Gutierrez, A. P., & Arditi, R. (1995). Credible, parsimonious and useful predator-prey models: a reply to Abrams, Gleeson, and Sarnelle. Ecology, 76(6), 1980-1985. https://doi.org/10.2307/1940728
  • Brauer, F., Van den Driessche, P., & Wu, J. (Eds.). (2008). Mathematical Epidemiology (Vol. 1945). Springer. https://doi.org/10.1007/978-3-540-78911-6
  • Çetinkaya, S., Demir, A., & Sevindir, H. K. (2021). Solution of space‐time‐fractional problem by Shehu variational iteration method. Advances in Mathematical Physics, 2021(1), Article 5528928. https://doi.org/10.1155/2021/5528928
  • Çetinkaya, S., & Demir, A. (2023). On the solution of time fractional initial value problem by a new method with ARA transform. Journal of Intelligent & Fuzzy Systems, 44(2), 2693-2701. https://doi.org/10.3233/JIFS-223237
  • Çetinkaya, S., & Demir, A. (2021). On the solution of Bratu's initial value problem in the Liouville-Caputo sense by ARA transform and decomposition method. Comptes Rendus de l’Académie Bulgare des Sciences, 74(12), 1729-1738. https://doi.org/10.7546/CRABS.2021.12.02
  • Gakkar, S., & Naji, R. K. (2003). Order and chaos in predator to prey ratio-dependent food chain. Chaos, Solitons & Fractals, 18(2), 229-239. https://doi.org/10.1016/S0960-0779(02)00642-2
  • Ginzburg, L. R., & Akçakaya, H. R. (1992). Consequences of ratio-dependent predation for steady state properties of ecosystems. Ecology, 73(5), 1536-1543. https://doi.org/10.2307/1940006
  • Hastings, A., & Powell, T. (1991). Chaos in a three-species food chain. Ecology, 72(3), 896-903. https://doi.org/10.2307/1940591
  • Hastings, A., & Klebanoff, A. (1994). Chaos in three species food chains. Journal of Mathematical Biology, 32, 427-451. https://doi.org/10.1007/BF00160167
  • Hethcote, H., Zhien, M., & Shengbing, L. (2002). Effects of quarantine in six endemic models for infectious diseases. Mathematical Biosciences, 180(1-2), 141-160. https://doi.org/10.1016/S0025-5564(02)00111-6
  • Hsu, S. B., Hwang, T. W., & Kuang, Y. (2001). Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system. Journal of Mathematical Biology, 42, 489-506. https://doi.org/10.1007/s002850100079
  • Hsu, S. B., Hwang, T. W., & Kuang, Y. (2003). A ratio-dependent food chain model and its applications to biological control. Mathematical Biosciences, 181(1), 55-83. https://doi.org/10.1016/S0025-5564(02)00127-X
  • Joy, M. P. (1997). On the integrability and chaotic behavior of an ecological model. International Journal of Bifurcation and Chaos, 7(2), 463-468. https://doi.org/10.48550/arXiv.chao-dyn/9612003
  • Kara, R., & Can, M. (2006). Ratio-Dependent Food Chain Models with Three Trophic Levels. International Journal of Computer Science, 1(2), 85-92.
  • Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 115 (772), 700-721.
  • Linda, J. S. A. (2007). An Introduction to Mathematical Biology (123–127). Pearson Education.
  • McCarthy, M. A., Ginzburg, L. R., & Akçakaya, H. R. (1995). Predator interference across trophic chains. Ecology, 76(4), 1310-1319. https://doi.org/10.2307/1940937
  • Öztürk, Z., Bilgil, H., & Sorgun, S. (2023a). Application of fractional SIQRV model for SARS-CoV-2 and stability analysis. Symmetry, 15(5), Article 1048. https://doi.org/10.3390/sym15051048
  • Öztürk, Z., Bilgil, H., & Sorgun, S. (2023b). Application of fractional $ SPR $ psychological disease model in Turkey and stability analysis. Journal of Mathematical Sciences and Modelling, 6(2), 49-55. http://dx.doi.org/ 10.33187/jmsm.1196961
  • Öztürk, Z., Bilgil, H., & Sorgun, S. (2022). Stability analysis of fractional PSQp smoking model and application in Turkey. New Trends in Mathematical Sciences, 10(4), 54-62. https://doi.org/10.20852/ntmsci.2022.488
  • Öztürk, Z., Yousef, A., Bilgil, H., & Sorgun, S. (2024a). A fractional-order mathematical model to analyze the stability and develop a sterilization strategy for the habitat of stray dogs. An International Journal of Optimization and Control: Theories & Applications, 14(2), 134-146. https://doi.org/10.11121/ijocta.1418
  • Öztürk, Z., Bilgil, H., & Sorgun, S. (2024b). A new application of fractional glucose-insulin model and numerical solutions. Sigma Journal of Engineering and Natural Sciences, 42(2), 407-413. https://doi.org/10.14744/sigma.2023.00022
  • Podlubny, I. (1999). Fractional differential equations. Academy Press. Sevindir, H. K., Çetinkaya, S., & Demir, A. (2021). On effects of a new method for fractional initial value problems. Advances in Mathematical Physics, 2021(1), Article 7606442. https://doi.org/10.1155/2021/7606442
  • Ws, M. S., Mohd, I. B., Mamat, M., & Salleh, Z. (2012). Mathematical model of three species food chain interaction with mixed functional response. In International Journal of Modern Physics: Conference Series, 9, 334-340. World Scientific Publishing Company https://doi.org/10.1142/S2010194512005399
  • Yaro, D., Omari-Sasu, S. K., Harvim, P., Saviour, A. W., & Obeng, B. A. (2015). Generalized Euler method for modeling measles with fractional differential equations. International Journal of Innovative Research and Development, 4(4), 358-366.

Kesir Mertebeden Orana Bağlı Besin Zinciri Modelinin Caputo Türevi ile Sayısal Çözümleri

Yıl 2025, Cilt: 13 Sayı: 4, 1544 - 1555, 30.10.2025
https://doi.org/10.29130/dubited.1600292

Öz

The study of life within an ecosystem reveals a complex system. Ecosystems are characterised by the presence of all the elements that give rise to chaotic dynamics. Although chaos is often predicted by mathematical models, there is currently only limited evidence of its existence in nature, with the proof of its occurrence remaining scarce and uncertain. Despite the apparent simplicity of food chains, they exhibit highly complex dynamics. Models created several years ago have confirmed that food chains have complex dynamics. In this study, a fractional order rate-dependent food chain model is considered. This model consists of three compartments: prey population density (X), predator population density (Y) and top predator density (Z). The fractional derivative is employed in accordance with the Caputo sense. A mathematical analysis of the fractional order rate-dependent food chain model is conducted. Numerical results are obtained with the aid of the Euler method and the graphs are interpreted.

Kaynakça

  • Arditi, R., & Ginzburg, L. R. (1989). Coupling in predator-prey dynamics: Ratio-dependence. Journal of Theoretical Biology, 139(3), 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
  • Berryman, A. A., Gutierrez, A. P., & Arditi, R. (1995). Credible, parsimonious and useful predator-prey models: a reply to Abrams, Gleeson, and Sarnelle. Ecology, 76(6), 1980-1985. https://doi.org/10.2307/1940728
  • Brauer, F., Van den Driessche, P., & Wu, J. (Eds.). (2008). Mathematical Epidemiology (Vol. 1945). Springer. https://doi.org/10.1007/978-3-540-78911-6
  • Çetinkaya, S., Demir, A., & Sevindir, H. K. (2021). Solution of space‐time‐fractional problem by Shehu variational iteration method. Advances in Mathematical Physics, 2021(1), Article 5528928. https://doi.org/10.1155/2021/5528928
  • Çetinkaya, S., & Demir, A. (2023). On the solution of time fractional initial value problem by a new method with ARA transform. Journal of Intelligent & Fuzzy Systems, 44(2), 2693-2701. https://doi.org/10.3233/JIFS-223237
  • Çetinkaya, S., & Demir, A. (2021). On the solution of Bratu's initial value problem in the Liouville-Caputo sense by ARA transform and decomposition method. Comptes Rendus de l’Académie Bulgare des Sciences, 74(12), 1729-1738. https://doi.org/10.7546/CRABS.2021.12.02
  • Gakkar, S., & Naji, R. K. (2003). Order and chaos in predator to prey ratio-dependent food chain. Chaos, Solitons & Fractals, 18(2), 229-239. https://doi.org/10.1016/S0960-0779(02)00642-2
  • Ginzburg, L. R., & Akçakaya, H. R. (1992). Consequences of ratio-dependent predation for steady state properties of ecosystems. Ecology, 73(5), 1536-1543. https://doi.org/10.2307/1940006
  • Hastings, A., & Powell, T. (1991). Chaos in a three-species food chain. Ecology, 72(3), 896-903. https://doi.org/10.2307/1940591
  • Hastings, A., & Klebanoff, A. (1994). Chaos in three species food chains. Journal of Mathematical Biology, 32, 427-451. https://doi.org/10.1007/BF00160167
  • Hethcote, H., Zhien, M., & Shengbing, L. (2002). Effects of quarantine in six endemic models for infectious diseases. Mathematical Biosciences, 180(1-2), 141-160. https://doi.org/10.1016/S0025-5564(02)00111-6
  • Hsu, S. B., Hwang, T. W., & Kuang, Y. (2001). Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system. Journal of Mathematical Biology, 42, 489-506. https://doi.org/10.1007/s002850100079
  • Hsu, S. B., Hwang, T. W., & Kuang, Y. (2003). A ratio-dependent food chain model and its applications to biological control. Mathematical Biosciences, 181(1), 55-83. https://doi.org/10.1016/S0025-5564(02)00127-X
  • Joy, M. P. (1997). On the integrability and chaotic behavior of an ecological model. International Journal of Bifurcation and Chaos, 7(2), 463-468. https://doi.org/10.48550/arXiv.chao-dyn/9612003
  • Kara, R., & Can, M. (2006). Ratio-Dependent Food Chain Models with Three Trophic Levels. International Journal of Computer Science, 1(2), 85-92.
  • Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 115 (772), 700-721.
  • Linda, J. S. A. (2007). An Introduction to Mathematical Biology (123–127). Pearson Education.
  • McCarthy, M. A., Ginzburg, L. R., & Akçakaya, H. R. (1995). Predator interference across trophic chains. Ecology, 76(4), 1310-1319. https://doi.org/10.2307/1940937
  • Öztürk, Z., Bilgil, H., & Sorgun, S. (2023a). Application of fractional SIQRV model for SARS-CoV-2 and stability analysis. Symmetry, 15(5), Article 1048. https://doi.org/10.3390/sym15051048
  • Öztürk, Z., Bilgil, H., & Sorgun, S. (2023b). Application of fractional $ SPR $ psychological disease model in Turkey and stability analysis. Journal of Mathematical Sciences and Modelling, 6(2), 49-55. http://dx.doi.org/ 10.33187/jmsm.1196961
  • Öztürk, Z., Bilgil, H., & Sorgun, S. (2022). Stability analysis of fractional PSQp smoking model and application in Turkey. New Trends in Mathematical Sciences, 10(4), 54-62. https://doi.org/10.20852/ntmsci.2022.488
  • Öztürk, Z., Yousef, A., Bilgil, H., & Sorgun, S. (2024a). A fractional-order mathematical model to analyze the stability and develop a sterilization strategy for the habitat of stray dogs. An International Journal of Optimization and Control: Theories & Applications, 14(2), 134-146. https://doi.org/10.11121/ijocta.1418
  • Öztürk, Z., Bilgil, H., & Sorgun, S. (2024b). A new application of fractional glucose-insulin model and numerical solutions. Sigma Journal of Engineering and Natural Sciences, 42(2), 407-413. https://doi.org/10.14744/sigma.2023.00022
  • Podlubny, I. (1999). Fractional differential equations. Academy Press. Sevindir, H. K., Çetinkaya, S., & Demir, A. (2021). On effects of a new method for fractional initial value problems. Advances in Mathematical Physics, 2021(1), Article 7606442. https://doi.org/10.1155/2021/7606442
  • Ws, M. S., Mohd, I. B., Mamat, M., & Salleh, Z. (2012). Mathematical model of three species food chain interaction with mixed functional response. In International Journal of Modern Physics: Conference Series, 9, 334-340. World Scientific Publishing Company https://doi.org/10.1142/S2010194512005399
  • Yaro, D., Omari-Sasu, S. K., Harvim, P., Saviour, A. W., & Obeng, B. A. (2015). Generalized Euler method for modeling measles with fractional differential equations. International Journal of Innovative Research and Development, 4(4), 358-366.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik Fizik (Diğer)
Bölüm Makaleler
Yazarlar

Zafer Öztürk 0000-0001-5662-4670

Yayımlanma Tarihi 30 Ekim 2025
Gönderilme Tarihi 12 Aralık 2024
Kabul Tarihi 14 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 4

Kaynak Göster

APA Öztürk, Z. (2025). Numerical Solutions of Fractional Order Ratio-Dependent Food Chain Model with Caputo Derivative. Duzce University Journal of Science and Technology, 13(4), 1544-1555. https://doi.org/10.29130/dubited.1600292
AMA Öztürk Z. Numerical Solutions of Fractional Order Ratio-Dependent Food Chain Model with Caputo Derivative. DÜBİTED. Ekim 2025;13(4):1544-1555. doi:10.29130/dubited.1600292
Chicago Öztürk, Zafer. “Numerical Solutions of Fractional Order Ratio-Dependent Food Chain Model with Caputo Derivative”. Duzce University Journal of Science and Technology 13, sy. 4 (Ekim 2025): 1544-55. https://doi.org/10.29130/dubited.1600292.
EndNote Öztürk Z (01 Ekim 2025) Numerical Solutions of Fractional Order Ratio-Dependent Food Chain Model with Caputo Derivative. Duzce University Journal of Science and Technology 13 4 1544–1555.
IEEE Z. Öztürk, “Numerical Solutions of Fractional Order Ratio-Dependent Food Chain Model with Caputo Derivative”, DÜBİTED, c. 13, sy. 4, ss. 1544–1555, 2025, doi: 10.29130/dubited.1600292.
ISNAD Öztürk, Zafer. “Numerical Solutions of Fractional Order Ratio-Dependent Food Chain Model with Caputo Derivative”. Duzce University Journal of Science and Technology 13/4 (Ekim2025), 1544-1555. https://doi.org/10.29130/dubited.1600292.
JAMA Öztürk Z. Numerical Solutions of Fractional Order Ratio-Dependent Food Chain Model with Caputo Derivative. DÜBİTED. 2025;13:1544–1555.
MLA Öztürk, Zafer. “Numerical Solutions of Fractional Order Ratio-Dependent Food Chain Model with Caputo Derivative”. Duzce University Journal of Science and Technology, c. 13, sy. 4, 2025, ss. 1544-55, doi:10.29130/dubited.1600292.
Vancouver Öztürk Z. Numerical Solutions of Fractional Order Ratio-Dependent Food Chain Model with Caputo Derivative. DÜBİTED. 2025;13(4):1544-55.