Agrega Tane Boyut Dağılımı ve PP Lif Kullanımının Betonda Plastik Rötre Çatlağı Oluşumu Üzerine Etkileri
Yıl 2022,
, 611 - 618, 30.09.2022
Hasan Nuri Türkmenoğlu
,
Hakan Nuri Atahan
Öz
Plastik rötre betonun henüz sertleşmediği zaman diliminde meydana gelen yüzeysel bir çatlak türüdür. Temel nedeni beton yüzeyindeki buharlaşma hızının betonun terleme hızından yüksek olmasına bağlı olarak yüzeyin kurumasıdır. Böylece beton yüzeyi büzülmeye başlarken, alt kısımlarda kalan beton plastik kıvamda olduğu için yüzey ile benzer büzülmeyi gösteremez ve yüzeyde harita şeklinde çatlaklar oluşur. Yapılan çalışmada, toplam agrega hacminin sabit olduğu 3 farklı agrega dağılımına sahip beton ve 2 farklı polipropilen lif değişik oranlarda kullanılarak plastik rötre üzerine etkileri incelenmiştir. Deneylerde yöntem olarak ASTM C1579 standardı esas alınmış olup çatlak parametreleri deney sırasında çekilen fotoğraflar işlenerek elde edilmiştir. Elde edilen sonuçlar daha iri agrega dağılımının çatlak oluşumunu önlemede daha başarılı olduğunu ortaya koymuştur. Fakat çatlağı önlemek için kullanılan liflerin etkinliği agrega dağılımı irileştikçe azalmıştır. Diğer yandan kullanılan lifler plastik rötre çatlağını belirgin bir şekilde engellemişlerdir fakat aynı boydaki liflerden narinliği daha yüksek olan monofilament lifin kullanıldığı betonlardan daha iyi sonuçlar elde edilmiştir.
Kaynakça
- [1] W. P. Boshoff and R. Combrinck, “Modelling the severity of plastic shrinkage cracking in concrete,” Cem. Concr. Res., vol. 48, pp. 34–39, 2013, doi: 10.1016/j.cemconres.2013.02.003.
- [2] G. M. Moelich, J. E. van Zyl, N. Rabie, and R. Combrinck, “The influence of solar radiation on plastic shrinkage cracking in concrete,” Cem. Concr. Compos., vol. 123, no. July, p. 104182, 2021, doi: 10.1016/j.cemconcomp.2021.104182.
- [3] A. Sivakumar and M. Santhanam, “A quantitative study on the plastic shrinkage cracking in high strength hybrid fiber reinforced concrete,” vol. 29, pp. 575–581, 2007, doi: 10.1016/j.cemconcomp.2007.03.005.
- [4] A. Leemann, P. Nygaard, and P. Lura, “Impact of admixtures on the plastic shrinkage cracking of self-compacting concrete,” Cem. Concr. Compos., vol. 46, pp. 1–7, Feb. 2014, doi: 10.1016/j.cemconcomp.2013.11.002.
- [5] W. Yiran, Z. Zhiqing, L. Juan, and Y. Lei, “Experimental Study on Preventive Measures of Plastic Shrinkage Cracking of Cement Concrete,” Procedia - Soc. Behav. Sci., vol. 96, no. Cictp, pp. 196–204, 2013, doi: 10.1016/j.sbspro.2013.08.026.
- [6] T. Rahmani, B. Kiani, M. Bakhshi, and M. Shekarchizadeh, “Application of different fibers to reduce plastic shrinkage cracking of concrete,” pp. 635–642, 2012.
- [7] V. T. N. Dao, P. F. Dux, and P. H. Morris, “Tensile Properties of Early-Age Concrete,” ACI Mater. J., no. 106, 2009.
- [8] E. Boghossian and L. D. Wegner, “Use of flax fibres to reduce plastic shrinkage cracking in concrete,” Cem. Concr. Compos., vol. 30, no. 10, pp. 929–937, Nov. 2008, doi: 10.1016/j.cemconcomp.2008.09.003.
- [9] P. Soroushian and S. Ravanbakhsh, “Control of Plastic Shrinkage Cracking with Specialty Cellulose Fibers,” no. 95, pp. 429–435, 1999.
- [10] N. Banthia and R. Gupta, “Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete,” vol. 36, pp. 1263–1267, 2006, doi: 10.1016/j.cemconres.2006.01.010.
- [11] N. Kouta, J. Saliba, and N. Saiyouri, “Effect of flax fibers on early age shrinkage and cracking of earth concrete,” Constr. Build. Mater., vol. 254, p. 119315, 2020, doi: 10.1016/j.conbuildmat.2020.119315.
- [12] A. Kronlöf, M. Leivo, and P. Sipari, “Experimental study on the basic phenomena of shrinkage and cracking of fresh mortar,” Cem. Concr. Res., vol. 25, no. 8, pp. 1747–1754, Dec. 1995, doi: 10.1016/0008-8846(95)00170-0.
- [13] R. Combrinck, M. Kayondo, B. D. le Roux, W. I. de Villiers, and W. P. Boshoff, “Effect of various liquid admixtures on cracking of plastic concrete,” Constr. Build. Mater., vol. 202, pp. 139–153, 2019, doi: 10.1016/j.conbuildmat.2018.12.060.
- [14] M. Nasir, O. S. Baghabra Al-Amoudi, and M. Maslehuddin, “Effect of placement temperature and curing method on plastic shrinkage of plain and pozzolanic cement concretes under hot weather,” Constr. Build. Mater., vol. 152, pp. 943–953, 2017, doi: 10.1016/j.conbuildmat.2017.07.068.
- [15] P. Lura, B. Pease, G. B. Mazzotta, F. Rajabipour, and J. Weiss, “Influence of Shrinkage-Reducing Admixtures on Development of Plastic Shrinkage Cracks,” no. 104, pp. 187–194, 2008.
- [16] D. P. Bentz, M. R. Geiker, and K. K. Hansen, “Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars,” vol. 31, pp. 1075–1085, 2001.
- [17] J. Mora-ruacho, R. Gettu, and A. Aguado, “Cement and Concrete Research In fl uence of shrinkage-reducing admixtures on the reduction of plastic shrinkage cracking in concrete,” Cem. Concr. Res., vol. 39, no. 3, pp. 141–146, 2009, doi: 10.1016/j.cemconres.2008.11.011.
- [18] W. Zhang et al., “Influence of shrinkage reducing admixtures on the performance of cementitious composites: A review,” Constr. Build. Mater., vol. 325, no. November 2021, p. 126579, 2022, doi: 10.1016/j.conbuildmat.2022.126579.
- [19] R. Bloom and A. Bentur, “Free and Restrained Shrinkage of Normal and High-Strength Concretes,” no. 92, pp. 211–217, 1996.
- [20] G. Olivier, R. Combrinck, M. Kayondo, and W. P. Boshoff, “Combined effect of nano-silica, super absorbent polymers, and synthetic fibres on plastic shrinkage cracking in concrete,” Constr. Build. Mater., vol. 192, pp. 85–98, 2018, doi: 10.1016/j.conbuildmat.2018.10.102.
- [21] S. Ghourchian, M. Wyrzykowski, M. Plamondon, and P. Lura, “On the mechanism of plastic shrinkage cracking in fresh cementitious materials,” Cem. Concr. Res., vol. 115, no. October 2018, pp. 251–263, 2019, doi: 10.1016/j.cemconres.2018.10.015.
- [22] K. Wang, S. P. Shah, and P. Phuaksuk, “Plastic Shrinkage Cracking in Concrete Materials — Influence of Fly Ash and Fibers,” no. 98, 2002.
- [23] H. Zhao et al., “Effect of clay content on plastic shrinkage cracking of cementitious materials,” Constr. Build. Mater., vol. 342, no. PA, p. 127989, 2022, doi: 10.1016/j.conbuildmat.2022.127989.
- [24] T. A. Samman, W. H. Mirza, and F. F. Wafa, “Plastic Shrinkage Cracking of Normal and High-Strength Concrete : A Comparative Study,” no. 93, pp. 36–40, 1996.
- [25] P. Soroushian, F. Mirza, and A. Alhozaimy, “Plastic Shrinkage Cracking of Polypropylene Fiber Reinforced Concrete,” no. 92, pp. 553–560, 1995.
- [26] Z. Bayasi and M. Mcintyre, “Application of Fibrillated Polypropylene Fibers for Restraint of Plastic Shrinkage Cracking in Silica Fume Concrete,” no. 99, pp. 337–344, 2003.
- [27] ASTM International, “Standard Test Method for Evaluating Plastic Shrinkage Cracking of Restrained Fiber Reinforced Concrete (Using a Steel Form Insert) (ASTM C 1579),” 2021. doi: 10.1520/C1579-13.2.
- [28] Turkish Standards Institution, “Design of Concrete Mixes (TS 802),” 2016.
- [29] Turkish Standards Institution, “Testing fresh concrete, Part 2: Slump test (TS EN 12350-2:2019),” 2019.
- [30] Turkish Standards Institution, “Testing fresh concrete, Part 6: Density (TS EN 12350-6:2019),” 2019.
- [31] Turkish Standards Institution, “Determination of the concrete setting time by measurement of penetration resistance (TS 2987),” 1978.
- [32] Turkish Standards Institution, “Testing hardened concrete, Part 3: Compressive strength of test specimens (TS EN 12390-3:2019),” 2019.