Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental Investigation of the Effect of Grain Size Distribution on CBR (%) Values

Yıl 2025, Cilt: 16 Sayı: 2, 493 - 502, 30.06.2025
https://doi.org/10.24012/dumf.1628662

Öz

Various types of soil are widely used as fill materials in civil engineering applications. The physical and engineering properties of these materials are the primary parameters that determine their suitability for specific purposes. The performance and stability of structures depend largely on the design parameters of the fill material and the accurate prediction of how these parameters may change over the life of the structure. This study aims to experimentally investigate the effects of swelling potential, liquid limit, mean grain size and clay content of soils on the California bearing ratio (CBR %). For this purpose, seven different soil samples were prepared by adding different proportions of sand and gravel to a fine-grained, low plasticity kaolinite clay, resulting in soils with different grain size distributions and consistency properties. The samples were compacted to their optimum moisture content and maximum dry unit weight and then subjected to CBR tests under both dry and water-saturated conditions (after 96 hours of soaking). The CBR (%) values obtained from both conditions were compared and the ΔCBR (%) changes were calculated. The experimental findings showed that the change in CBR (%) values was significantly influenced by the swelling amount, liquid limit, mean grain size, and clay content. In particular, swelling caused a decrease in CBR (%) values ranging from 25% to 63%. These results indicate that the swelling potential of soils has a significant effect on their CBR (%) performance.

Kaynakça

  • [1] S. Roy and S. K. Bhalla, “Role of geotechnical properties of soil on civil engineering structures,” Resour. Environ., vol. 7, no. 4, pp. 103–109, 2017, doi: 10.5923/j.re.20170704.03
  • [2] A. Laskar and S. K. Pal, “Geotechnical characteristics of two different soils and their mixture and relationships between parameters,” Electron. J. Geotech. Eng., vol. 17, pp. 2821–2832, 2012 .
  • [3] B. Bui, J.-C. Morel, V.-H. Tran, S. Hans, and M. Oggero, “How to use in-situ soils as building materials,” Procedia Eng., vol. 145, pp. 1119–1126, 2016, doi: 10.1016/j.proeng.2016.04.145
  • [4] A. E. Oghenero, E. G. Akpokodje, and A. C. Tse, “Geotechnical properties of subsurface soils in Warri, Western Niger Delta, Nigeria,” J. Earth Sci. Geotech. Eng., vol. 4, no. 1, pp. 89–102, 2014.
  • [5] P. O. Youdeowei and H. O. Nwankwoala, “Suitability of soils as bearing media at a freshwater swamp terrain in the Niger Delta,” J. Geol. Min. Res., vol. 5, no. 3, pp. 58–64, 2013, doi: 10.5897/JGMR11.046.
  • [6] Y. Z. Beju and J. N. Mandal, “Experimental investigation of shear strength behaviors of stone dust–EPS geofoam interface,” J. Hazard. Toxic Radioact. Waste, vol. 22, no. 4, p. 04018033, 2018, doi: 10.1061/(ASCE)HZ.2153-5515.000042.
  • [7] D. S. Al-Abri and Y. E. A. Mohamedzein, “Performance of plastic pipes installed in dune sand,” in Proc. Pipelines 2010: Climbing New Peaks to Infrastructure Reliability—Renew, Rehab, and Reinvest, pp. 410–421, 2010, doi: 10.1061/41138(386)40.
  • [8] B. Dereli, “Konsol istinat duvarlarında geri dolgu malzemesi olarak Bitlis pomza agregalı köpük betonların kullanılabilirliğinin araştırılması,” Ph.D. dissertation, Süleyman Demirel Univ., 2024.
  • [9] I. W. Croudace and R. G. Rothwell, Micro-XRF studies of sediment cores. Springer, 2015, doi: 10.1007/978-94-017-9849-5.
  • [10] I. Gratchev, Rock mechanics through project-based learning. CRC Press/Balkema, 2020, doi: 10.1201/9780429278839.
  • [11] B. Baradan, İnşaat mühendisleri için malzeme bilgisi, vol. 307. DEÜ Yayınları, 2020.
  • [12] G. Vallejo and M. Ferrer, Mühendislik jeolojisi, K. Kayabalı, Trans. Ankara Üniversitesi Yayınları, 2014.
  • [13] J. M. Gere and B. J. Goodno, Mechanics of materials. Cengage Learning, 2012.
  • [14] R. D. Holtz, W. D. Kovacs, and T. C. Sheahan, An introduction to geotechnical engineering. Pearson Educ., 2023.
  • [15] E. Balaban, A. Šmejda, and M. İ. Onur, “Farklı dolgu malzemesine sahip donatılı istinad duvarlarının performanslarının değerlendirilmesi,” Resilience, pp. 117–128, 2020, doi: 10.32569/resilience.632301.
  • [16] M. Riccio, M. Ehrlich, and D. Dias, “Field monitoring and analyses of the response of a block-faced geogrid wall using fine-grained tropical soils,” Geotext. Geomembr., vol. 42, no. 2, pp. 127–138, 2014, doi: 10.1016/j.geotexmem.2014.01.006.
  • [17] G. Yang, H. Liu, P. Lv, and B. Zhang, “Geogrid-reinforced lime-treated cohesive soil retaining wall: Case study and implications,” Geotext. Geomembr., vol. 35, pp. 112–118, 2012, doi: 10.1016/j.geotexmem.2012.09.001.
  • [18] F. H. Chen, Foundations on expansive soils. Elsevier Sci. Publ., 1988.
  • [19] W. S. Abdullah, K. A. Alshhibli, and M. S. Al-Zou'bi, “Influence of pore water chemistry on the swelling behaviour of compacted clays,” Appl. Clay Sci., vol. 15, pp. 447–462, 1999, doi: 10.1016/S0169-1317(99)00034-4.
  • [20] J. C. Parker, D. F. Amos, and D. L. Kaster, “An evaluation of several methods of estimating soil volume change,” Soil Sci. Soc. Am. J., vol. 41, no. 6, pp. 1059–1064, 1977, doi: 10.2136/sssaj1977.03615995004100060008x.
  • [21] Y. J. Du, S. L. Li, and S. Hayashi, “Swelling–shrinkage properties and soil improvement of compacted expansive soil, Ning-Liang Highway, China,” Eng. Geol., vol. 53, pp. 351–358, 1999, doi: 10.1016/S0013-7952(98)00086-6.
  • [22] D. G. Fredlund, “The prediction and performance of structures on expansive soils,” in Proc. Int. Symp. on Prediction and Performance in Geotechnical Engineering, Calgary, pp. 51–60, Jun. 1987.
  • [23] B. Yıldırım, “Kaliforniya taşıma oranının (CBR) regresyon analizleri ve yapay sinir ağları ile belirlenmesi,” M.S. thesis, Niğde Univ., Inst. Sci. Tech., 2009.
  • [24] R. E. Grim, “Physico-chemical properties of soils: Clay minerals,” J. Soil Mech. Found. Div., vol. 85, no. 2, pp. 1–17, 1959.
  • [25] F. Civan, Reservoir formation damage: Fundamentals, modeling, assessment, and mitigation. Gulf Prof. Publ., 2023.
  • [26] A. T. Sudjianto, K. B. Suryolelono, A. Rifa’i, and I. B. Mochtar, “The effect of water content change and variation suction in behavior swelling of expansive soil,” Int. J. Civil Environ. Eng. IJCEE-IJENS, vol. 11, no. 3, pp. 11–17, 2011.
  • [27] Z. Kaya, “Kil zeminlerin şişme karakteristiklerinin belirlenmesi,” M.S. thesis, İTÜ, Inst. Sci. Tech., 1997.
  • [28] H. B. Seed, R. J. Woodward, and R. Lundgren, “Prediction of swelling potential for compacted clays,” J. Soil Mech. Found. Div., vol. 88, no. 3, pp. 53–87, 1962, doi: 10.1061/JSFEAQ.0000431.
  • [29] D. E. McCormack and L. P. Wilding, “Soil properties influencing swelling in Canfield and Geeburg soils,” Soil Sci. Soc. Am. Proc., vol. 39, pp. 496–502, 1975, doi: 10.2136/sssaj1975.03615995003900030034x.
  • [30] W. R. Gill and C. A. Reaves, “Relationships of Atterberg limits and cation-exchange capacity to some physical properties of soil,” Soil Sci. Soc. Am. Proc., vol. 21, pp. 491–494, 1957.
  • [31] T. W. Lambe and R. V. Whitman, Soil mechanics. John Wiley & Sons, 1969.
  • [32] B. Adeleke, J. Kinuthia, and J. Oti, “Strength and swell performance of high-sulphate kaolinite clay soil,” Sustainability, vol. 12, no. 23, p. 10164, 2020, doi: 10.3390/su122310164.
  • [33] I. Aksu, E. Bazilevskaya, and Z. T. Karpyn, “Swelling of clay minerals in unconsolidated porous media and its impact on permeability,” GeoResJ, vol. 7, pp. 1–13, 2015, doi: 10.1016/j.grj.2015.02.003.
  • [34] A. A. Sabtan, “Geotechnical properties of expansive clay shale in Tabuk, Saudi Arabia,” J. Asian Earth Sci., vol. 25, no. 5, pp. 747–757, 2005, doi: 10.1016/j.jseaes.2004.07.003.
  • [35] F. Wagner, “Mechanical properties of clays and clay minerals,” in Dev. Clay Sci., 2013, doi: 10.1016/B978-0-08-098258-8.00011-0.
  • [36] M. Gülen, A. Aslan Fidan, A. S. Köşeli, and H. Kılıç, “Effect of freeze-thaw on CBR in soils with different gradation and mineralogy,” Turk. J. Civ. Eng., vol. 35, no. 4, 2024, doi: 10.18400/tjce.1349440.
  • [37] V. Şeker, “Sıkıştırılmış zeminlerin Kaliforniya taşıma oranının (CBR) basit indeks özellikler kullanarak tahmin edilmesi,” M.S. thesis, Van Fen Bilimleri Enstitüsü, 2018.
  • [38] T. Taskiran, “Prediction of California Bearing Ratio (CBR) of fine-grained soils by AI methods,” Adv. Eng. Softw., vol. 41, pp. 886–892, 2010, doi: 10.1016/j.advengsoft.2010.01.003.
  • [39] G. V. Ramasubbarao and Sivasankar, “Predicting soaked CBR value of fine-grained soils using index and compaction characteristics,” Jordan J. Civ. Eng., vol. 3, pp. 354–360, 2013.
  • [40] Karayolları Genel Müdürlüğü, Karayolu teknik şartnamesi (Yol altyapısı, sanat yapıları, köprü ve tüneller, üstyapı ve çeşitli işler). Ankara: KGM, 2020. [Online]. Available: https://www.kgm.gov.tr
  • [41] W. G. Holtz and H. J. Gibbs, “Engineering properties of expansive clays,” Trans. Am. Soc. Civ. Eng., vol. 121, no. 1, pp. 641–663, 1956, doi: 10.1061/TACEAT.0007325.
  • [42] R. B. Peck, W. E. Hanson, and T. H. Thornburn, Foundation engineering. New York: John Wiley and Sons, 1974.
  • [43] K. Hazirbaba and H. Gullu, “California bearing ratio improvement and freeze–thaw performance of fine-grained soils treated with geofiber and synthetic fluid,” Cold Reg. Sci. Technol., vol. 63, no. 1–2, pp. 50–60, 2010, doi: 10.1016/j.coldregions.2010.05.006.
  • [44] E. Mina, R. Kusuma, and N. Ulfah, “Utilization of steel slag and fly ash in soil stabilization and their effect on California bearing ratio (CBR) value: Case study: Kp. Kadusentar road Medong village Mekarjaya subdistrict Pandeglang district,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 673, p. 012034, 2019, doi: 10.1088/1757-899X/673/1/012034. [45] J. E. Bowles, Engineering properties of soils and their measurement, 4th ed. New York: McGraw-Hill, 1992.

Dane Çapı Dağılımının CBR (%) Değerlerine Etkisinin Deneysel Olarak Araştırılması

Yıl 2025, Cilt: 16 Sayı: 2, 493 - 502, 30.06.2025
https://doi.org/10.24012/dumf.1628662

Öz

İnşaat mühendisliği uygulamalarında, farklı zemin türleri dolgu malzemesi olarak yaygın şekilde kullanılmaktadır. Bu malzemelerin fiziksel ve mühendislik özellikleri, kullanım amacını belirleyen başlıca parametrelerdir. Yapıların performansı ve stabilitesi, dolgu malzemesine ait tasarım parametrelerinin ve bu parametrelerin yapının hizmet süresi boyunca göstereceği değişimin doğru bir şekilde öngörülmesine bağlıdır. Bu çalışma, zeminlerin şişme miktarının, likit limitinin, ortalama dane çapının ve kil oranının California taşıma oranı (CBR %) üzerindeki etkilerini deneysel olarak ortaya koymayı amaçlamaktadır. Bu kapsamda, ince daneli ve düşük plastisiteli bir kile, farklı oranlarda kum ve çakıl ilave edilerek, farklı dane çapı dağılımı ve kıvam özelliklerine sahip yedi zemin numunesi hazırlanmıştır. Hazırlanan numuneler, optimum su muhtevası ve maksimum birim hacim ağırlıkta sıkıştırılarak hem kuru hem de 96 saat suda bekletilerek suya doygun hale getirildikten sonra CBR deneylerine tabi tutulmuştur. Her iki koşulda elde edilen CBR (%) değerleri karşılaştırılmış ve ΔCBR (%) değişimleri hesaplanmıştır. Deneysel veriler, CBR (%) değerlerindeki değişimin şişme miktarı, likit limit, ortalama dane çapı ve kil oranına bağlı olarak farklılık gösterdiğini ortaya koymuştur. Özellikle şişme miktarına bağlı olarak CBR (%) değerlerinde %25 ile %63 arasında azalma gözlemlenmiştir. Bu bulgular, zeminlerin şişme potansiyelinin CBR (%) üzerinde önemli bir etkiye sahip olduğunu göstermektedir.

Kaynakça

  • [1] S. Roy and S. K. Bhalla, “Role of geotechnical properties of soil on civil engineering structures,” Resour. Environ., vol. 7, no. 4, pp. 103–109, 2017, doi: 10.5923/j.re.20170704.03
  • [2] A. Laskar and S. K. Pal, “Geotechnical characteristics of two different soils and their mixture and relationships between parameters,” Electron. J. Geotech. Eng., vol. 17, pp. 2821–2832, 2012 .
  • [3] B. Bui, J.-C. Morel, V.-H. Tran, S. Hans, and M. Oggero, “How to use in-situ soils as building materials,” Procedia Eng., vol. 145, pp. 1119–1126, 2016, doi: 10.1016/j.proeng.2016.04.145
  • [4] A. E. Oghenero, E. G. Akpokodje, and A. C. Tse, “Geotechnical properties of subsurface soils in Warri, Western Niger Delta, Nigeria,” J. Earth Sci. Geotech. Eng., vol. 4, no. 1, pp. 89–102, 2014.
  • [5] P. O. Youdeowei and H. O. Nwankwoala, “Suitability of soils as bearing media at a freshwater swamp terrain in the Niger Delta,” J. Geol. Min. Res., vol. 5, no. 3, pp. 58–64, 2013, doi: 10.5897/JGMR11.046.
  • [6] Y. Z. Beju and J. N. Mandal, “Experimental investigation of shear strength behaviors of stone dust–EPS geofoam interface,” J. Hazard. Toxic Radioact. Waste, vol. 22, no. 4, p. 04018033, 2018, doi: 10.1061/(ASCE)HZ.2153-5515.000042.
  • [7] D. S. Al-Abri and Y. E. A. Mohamedzein, “Performance of plastic pipes installed in dune sand,” in Proc. Pipelines 2010: Climbing New Peaks to Infrastructure Reliability—Renew, Rehab, and Reinvest, pp. 410–421, 2010, doi: 10.1061/41138(386)40.
  • [8] B. Dereli, “Konsol istinat duvarlarında geri dolgu malzemesi olarak Bitlis pomza agregalı köpük betonların kullanılabilirliğinin araştırılması,” Ph.D. dissertation, Süleyman Demirel Univ., 2024.
  • [9] I. W. Croudace and R. G. Rothwell, Micro-XRF studies of sediment cores. Springer, 2015, doi: 10.1007/978-94-017-9849-5.
  • [10] I. Gratchev, Rock mechanics through project-based learning. CRC Press/Balkema, 2020, doi: 10.1201/9780429278839.
  • [11] B. Baradan, İnşaat mühendisleri için malzeme bilgisi, vol. 307. DEÜ Yayınları, 2020.
  • [12] G. Vallejo and M. Ferrer, Mühendislik jeolojisi, K. Kayabalı, Trans. Ankara Üniversitesi Yayınları, 2014.
  • [13] J. M. Gere and B. J. Goodno, Mechanics of materials. Cengage Learning, 2012.
  • [14] R. D. Holtz, W. D. Kovacs, and T. C. Sheahan, An introduction to geotechnical engineering. Pearson Educ., 2023.
  • [15] E. Balaban, A. Šmejda, and M. İ. Onur, “Farklı dolgu malzemesine sahip donatılı istinad duvarlarının performanslarının değerlendirilmesi,” Resilience, pp. 117–128, 2020, doi: 10.32569/resilience.632301.
  • [16] M. Riccio, M. Ehrlich, and D. Dias, “Field monitoring and analyses of the response of a block-faced geogrid wall using fine-grained tropical soils,” Geotext. Geomembr., vol. 42, no. 2, pp. 127–138, 2014, doi: 10.1016/j.geotexmem.2014.01.006.
  • [17] G. Yang, H. Liu, P. Lv, and B. Zhang, “Geogrid-reinforced lime-treated cohesive soil retaining wall: Case study and implications,” Geotext. Geomembr., vol. 35, pp. 112–118, 2012, doi: 10.1016/j.geotexmem.2012.09.001.
  • [18] F. H. Chen, Foundations on expansive soils. Elsevier Sci. Publ., 1988.
  • [19] W. S. Abdullah, K. A. Alshhibli, and M. S. Al-Zou'bi, “Influence of pore water chemistry on the swelling behaviour of compacted clays,” Appl. Clay Sci., vol. 15, pp. 447–462, 1999, doi: 10.1016/S0169-1317(99)00034-4.
  • [20] J. C. Parker, D. F. Amos, and D. L. Kaster, “An evaluation of several methods of estimating soil volume change,” Soil Sci. Soc. Am. J., vol. 41, no. 6, pp. 1059–1064, 1977, doi: 10.2136/sssaj1977.03615995004100060008x.
  • [21] Y. J. Du, S. L. Li, and S. Hayashi, “Swelling–shrinkage properties and soil improvement of compacted expansive soil, Ning-Liang Highway, China,” Eng. Geol., vol. 53, pp. 351–358, 1999, doi: 10.1016/S0013-7952(98)00086-6.
  • [22] D. G. Fredlund, “The prediction and performance of structures on expansive soils,” in Proc. Int. Symp. on Prediction and Performance in Geotechnical Engineering, Calgary, pp. 51–60, Jun. 1987.
  • [23] B. Yıldırım, “Kaliforniya taşıma oranının (CBR) regresyon analizleri ve yapay sinir ağları ile belirlenmesi,” M.S. thesis, Niğde Univ., Inst. Sci. Tech., 2009.
  • [24] R. E. Grim, “Physico-chemical properties of soils: Clay minerals,” J. Soil Mech. Found. Div., vol. 85, no. 2, pp. 1–17, 1959.
  • [25] F. Civan, Reservoir formation damage: Fundamentals, modeling, assessment, and mitigation. Gulf Prof. Publ., 2023.
  • [26] A. T. Sudjianto, K. B. Suryolelono, A. Rifa’i, and I. B. Mochtar, “The effect of water content change and variation suction in behavior swelling of expansive soil,” Int. J. Civil Environ. Eng. IJCEE-IJENS, vol. 11, no. 3, pp. 11–17, 2011.
  • [27] Z. Kaya, “Kil zeminlerin şişme karakteristiklerinin belirlenmesi,” M.S. thesis, İTÜ, Inst. Sci. Tech., 1997.
  • [28] H. B. Seed, R. J. Woodward, and R. Lundgren, “Prediction of swelling potential for compacted clays,” J. Soil Mech. Found. Div., vol. 88, no. 3, pp. 53–87, 1962, doi: 10.1061/JSFEAQ.0000431.
  • [29] D. E. McCormack and L. P. Wilding, “Soil properties influencing swelling in Canfield and Geeburg soils,” Soil Sci. Soc. Am. Proc., vol. 39, pp. 496–502, 1975, doi: 10.2136/sssaj1975.03615995003900030034x.
  • [30] W. R. Gill and C. A. Reaves, “Relationships of Atterberg limits and cation-exchange capacity to some physical properties of soil,” Soil Sci. Soc. Am. Proc., vol. 21, pp. 491–494, 1957.
  • [31] T. W. Lambe and R. V. Whitman, Soil mechanics. John Wiley & Sons, 1969.
  • [32] B. Adeleke, J. Kinuthia, and J. Oti, “Strength and swell performance of high-sulphate kaolinite clay soil,” Sustainability, vol. 12, no. 23, p. 10164, 2020, doi: 10.3390/su122310164.
  • [33] I. Aksu, E. Bazilevskaya, and Z. T. Karpyn, “Swelling of clay minerals in unconsolidated porous media and its impact on permeability,” GeoResJ, vol. 7, pp. 1–13, 2015, doi: 10.1016/j.grj.2015.02.003.
  • [34] A. A. Sabtan, “Geotechnical properties of expansive clay shale in Tabuk, Saudi Arabia,” J. Asian Earth Sci., vol. 25, no. 5, pp. 747–757, 2005, doi: 10.1016/j.jseaes.2004.07.003.
  • [35] F. Wagner, “Mechanical properties of clays and clay minerals,” in Dev. Clay Sci., 2013, doi: 10.1016/B978-0-08-098258-8.00011-0.
  • [36] M. Gülen, A. Aslan Fidan, A. S. Köşeli, and H. Kılıç, “Effect of freeze-thaw on CBR in soils with different gradation and mineralogy,” Turk. J. Civ. Eng., vol. 35, no. 4, 2024, doi: 10.18400/tjce.1349440.
  • [37] V. Şeker, “Sıkıştırılmış zeminlerin Kaliforniya taşıma oranının (CBR) basit indeks özellikler kullanarak tahmin edilmesi,” M.S. thesis, Van Fen Bilimleri Enstitüsü, 2018.
  • [38] T. Taskiran, “Prediction of California Bearing Ratio (CBR) of fine-grained soils by AI methods,” Adv. Eng. Softw., vol. 41, pp. 886–892, 2010, doi: 10.1016/j.advengsoft.2010.01.003.
  • [39] G. V. Ramasubbarao and Sivasankar, “Predicting soaked CBR value of fine-grained soils using index and compaction characteristics,” Jordan J. Civ. Eng., vol. 3, pp. 354–360, 2013.
  • [40] Karayolları Genel Müdürlüğü, Karayolu teknik şartnamesi (Yol altyapısı, sanat yapıları, köprü ve tüneller, üstyapı ve çeşitli işler). Ankara: KGM, 2020. [Online]. Available: https://www.kgm.gov.tr
  • [41] W. G. Holtz and H. J. Gibbs, “Engineering properties of expansive clays,” Trans. Am. Soc. Civ. Eng., vol. 121, no. 1, pp. 641–663, 1956, doi: 10.1061/TACEAT.0007325.
  • [42] R. B. Peck, W. E. Hanson, and T. H. Thornburn, Foundation engineering. New York: John Wiley and Sons, 1974.
  • [43] K. Hazirbaba and H. Gullu, “California bearing ratio improvement and freeze–thaw performance of fine-grained soils treated with geofiber and synthetic fluid,” Cold Reg. Sci. Technol., vol. 63, no. 1–2, pp. 50–60, 2010, doi: 10.1016/j.coldregions.2010.05.006.
  • [44] E. Mina, R. Kusuma, and N. Ulfah, “Utilization of steel slag and fly ash in soil stabilization and their effect on California bearing ratio (CBR) value: Case study: Kp. Kadusentar road Medong village Mekarjaya subdistrict Pandeglang district,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 673, p. 012034, 2019, doi: 10.1088/1757-899X/673/1/012034. [45] J. E. Bowles, Engineering properties of soils and their measurement, 4th ed. New York: McGraw-Hill, 1992.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Geoteknik Mühendisliği, İnşaat Mühendisliğinde Zemin Mekaniği
Bölüm Araştırma Makalesi
Yazarlar

Murat Gülen 0000-0003-4143-9266

Suat Akbulut 0000-0001-5266-0543

Yaşar Kayan 0000-0002-5106-6072

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 28 Ocak 2025
Kabul Tarihi 13 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 2

Kaynak Göster

IEEE M. Gülen, S. Akbulut, ve Y. Kayan, “Dane Çapı Dağılımının CBR (%) Değerlerine Etkisinin Deneysel Olarak Araştırılması”, DÜMF MD, c. 16, sy. 2, ss. 493–502, 2025, doi: 10.24012/dumf.1628662.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456