Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Performances of Two Different Antipodal Vivaldi Antennas in Microwave Breast Cancer Detection Systems

Yıl 2025, Cilt: 16 Sayı: 4, 857 - 864, 30.12.2025
https://doi.org/10.24012/dumf.1679840

Öz

In this study, two different antipodal Vivaldi antennas were designed using CST MWS simulation program. The proposed antipodal Vivaldi antennas were designed using 1.6 mm thick FR4 material. The dielectric constant of this material is 4.4 and the loss tangent value is 0.002. The impedance of the feed port is 50 Ω and the copper thickness is 0.035 µm. The compact size of the first antenna is 30 mm x 36 mm, its gain is 5.04 dB and its directivity is 6.48 dB. The size of the second antenna is 38 mm x 33.5 mm, its gain is 7.68 dB and its directivity is 8.77 dB. In the simulation environment, two phantoms were created by placing spherical tumors with two different diameters, each inside a separate heterogeneous breast phantom. Then, the designed antennas in the simulation environment were tested for tumor detection performance on the phantom using the radar-based microwave breast cancer imaging technique (RMWI). After the signal processing stages, tumor images were obtained. In microwave imaging methods, the performance of two different antennas on tumor detection was observed in terms of gain and directivity. In the breast cancer detection study using RMWI technique, the importance of antenna properties such as gain and directivity was emphasized.

Kaynakça

  • [1] American Cancer Society. Key Statistics for Breast Cancer. American Cancer Society, Atlanta, USA. 2023, https://www.breastcancer.org/facts-statistics
  • [2] World Health Organization. Breast Cancer. World Health Organization, Global Breast Cancer Initiative. 2023, https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  • [3] B. J. Pomerantz, "Imaging and Interventional Radiology for Cancer." Surgical Oncology for the General Surgeon, An Issue of Surgical Clinics, vol. 100, no. 3, pp. 499-506, 2020.
  • [4] Z. He, Z. Chen, M. Tan, S. Elingarami, Y. Liu, T. Li, Y. Deng, N. He, S. Li, J. Fu and W. Li, "A review on methods for diagnosis of breast cancer cells and tissues." Cell proliferation, 53(7), e12822, 2020.
  • [5] K. Lalitha and J. Manjula, "Non-invasive microwave head imaging to detect tumors and to estimate their size and location." Physics in Medicine 13: 100047, 2022.
  • [6] A. Naghibi, A. R. Attari, "Near-field radar-based microwave imaging for breast cancer detection: A study on resolution and image quality." IEEE Transactions on antennas and propagation 69.3: 1670-1680, 2020.
  • [7] E. C. Fear, X. Li, S.C. Hagness and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions." IEEE Transactions on biomedical engineering, 49(8), 812-822, 2002.
  • [8] D. Guliato, R. M. Rangayyan, J. D. Carvalho and S. A. Santiago. Polygonal modeling of contours of breast tumors with the preservation of spicules. IEEE Transactions on Biomedical Engineering. 55(1), 14-20, 2007.
  • [9] D. Á. Sánchez-Bayuela, N. Ghavami, G. Tiberi, L. Sani, A. Vispa, A. Bigotti, and A. S. Tagliafico. A multicentric, single arm, prospective, stratified clinical investigation to evaluate MammoWave’s ability in breast lesions detection. PLoS One. 18(7), e0288312, 2023.
  • [10] K. Singh, M. Dhayal and S. Dwivedi. Breast cancer detection by terahertz UWB microstrip patch antenna loaded with 6X6 SRR array. IETE Journal of Research. 70(5), 5295-5310, 2024.
  • [11] J. Moll, T. Slanina, J. Stindl, T. Maetz, D. Nguyen H. and V. Krozer. Temperature-induced contrast enhancement for radar-based breast tumor detection at k-band using tissue mimicking phantoms. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 7(3), 251-257, 2023.
  • [12] A. O. Asok, M. A. Shukoor and S. Dey. Breast cancer detection with metamerial enabled monopole antennas using microwave imaging. In 2022 IEEE International Conference on Emerging Electronics (ICEE). pp. 1-4, 2022.
  • [13] A. Bhaij, A. Haddad, R. Jouali, K. Sabri, and M. Aoutoul, Design and optimization of a vivaldi antenna for early cancer detection: Sar and current density analysis. Int. J. Tech. Phys. Probl. Eng. 16, 85-92, 2024.
  • [14] M. Abbak, M. Çayören and I. Akduman, "Microwave breast phantom measurements with a cavity‐backed Vivaldi antenna." IET Microwaves, Antennas & Propagation 8.13: 1127-1133, 2014.
  • [15] A. Lazaro, R. Villarino and D. Girbau. Design of tapered slot Vivaldi antenna for UWB breast cancer detection. Microwave and Optical Technology Letters, 53(3), 639-643, 2011.
  • [16] M. Salimi, S. Gheitarani Sehrigh and S. Rajebi. Design and analysis of Microstrip Patch Antenna for hyperthermia applications in breast cancer. International Journal on Technical and Physical Problems of Engineering (IJTPE). (41), 71-76, 2019.
  • [17] J. L. Rajput, A. B. Nandgaonkar, S. L. Nalbalwar, A. E. Wagh and N. G. Huilgol. Performance evaluation of compact rectangular microstrip antenna for breast hyperthermia. Int. J. Tech. Phys. Probl. Eng. 48, 87-94, 2021.
  • [18] M. A. Aldhaeebi and T. S. Almoneef. Dipole array sensor for microwave breast cancer detection. IEEE Access. 11, 91375-91384, 2023.
  • [19] Z. Hood, T. Karacolak, E. Topsakal, "A small antipodal Vivaldi antenna for ultrawide-band applications." IEEE Antennas and Wireless propagation letters 7: 656-660, 2008.
  • [20] A. Hossain, S. Pancrazio, T. Kelley and A. V. Pham. A Compact and Low-Profile High-Gain Multilayer Vivaldi Antenna Based on Gradient Metasurface Superstrates. IEEE Antennas and Wireless Propagation Letters. pp. 1-5, 2025.
  • [21] J. Harel, M. Himdi, O. Lafond, O. Clauzier, O. Vivares. A compact Vivaldi-shaped array using antipodal Vivaldi antennas to stabilize the high-frequency radiation pattern. IEEE Access. 13, 29983–29993, 2025.
  • [22] M. T. Islam, M. Z. Mahmud, N. Misran, J. I. Takada and M. Cho, "Microwave breast phantom measurement system with compact side slotted directional antenna." IEEE access 5: 5321-5330, 2017.
  • [23] R. Natarajan, J.V George, M. Kanagasabai, L. Lawrance and B. Moorthy. Modified antipodal Vivaldi antenna for ultra-wideband communications. IET Microw. Antennas Propag. 10, 401–405, 2016.
  • [24] M.T. Islam, M.Z. Mahmud, M.T Islam, M.T.S. Kibria and M. Samsuzzaman, M. A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array. Sci. Rep. 9, 15491, 2019.
  • [25] Z. Katbay, M. Le Roy, C. Olleik, A. Pérennec, S. Sadek and R. Lababidi, R. Bi-Static Time Domain Study for Microwave Breast Imaging. In 2018 18th Mediterranean Microwave Symposium (MMS) IEEE. pp. 411-414, 2018.
  • [26] M. Samsuzzaman, M.T. Islam, A.A. Shovon, R.L. Faruque and N. Misran. (2019). A 16‐modified antipodal Vivaldi antenna array for microwave‐based breast tumor imaging applications. Microwave and Optical Technology Letters. 61(9), 2110-2118, 2019.
  • [27] H. Özmen and M. B. KURT, "Radar-based microwave breast cancer detection system with a high-performanceultrawide band antipodal Vivaldi antenna." Turkish Journal of Electrical Engineering and Computer Sciences 29.5: 2326-2345, 2021.
  • [28] S. Christydass, G. Navaneethakrishnan, R. Palanisamy, C. A. Saleel, and B. S. Arputharaj. Split ring resonators and composite FR4 substrate for analysis and design of tri-band monopole antenna. Applied Physics Letters. 125(18), 2024.
  • [29] S. Z. Ali, K. Ahsan, D. ul Khairi, W. Alhalabi and M. S. Anwar. Advancements in FR4 dielectric analysis: Free space approach and measurement validation. Plos one. 19(9), e0305614, 2024.
  • [30] N. B. Kwe, V. Yadav, M. Kumar, S. V. Savilov, M. Z. A. Yahya, S. K. Singh. A comparative study of dielectric substrate materials effects on the performance of microstrip patch antenna for 5G/6G application. Journal of Materials Science: Materials in Electronics, 35(24), 1617, 2024.
  • [31] H. B. Lim, N. T. T. Nhung, E. P. Li and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm." IEEE Transactions on Biomedical Engineering 55.6: 1697-1704, 2008.
  • [32] J. Wang, M. Zhang, Y. Bai, H. Xu and Y. Fan. Distance compensation-based dual adaptive artifact removal algorithm in microwave breast tumor imaging system. Biomedical Signal Processing and Control. 88, 105598, 2024.
  • [33] K. V. Ranjitha and T. P. Pushphavathi. Analysis on improved Gaussian-Wiener filtering technique and GLCM based feature extraction for breast cancer diagnosis. Procedia Computer Science. 235, 2857-2866, 2024.
  • [34] R. Saini. Modified weiner filter for improving quality of MRI image for detection of diseases. Int. J. Adv. Res. Comput. Sci. 8, 64, 2017.
  • [35] R. Chakraborty, A. Bairagi, P. Samui and S. Das. Noise removal from digital mammogram. Eur. J. Pharm. Med. Res. 6, 312–319, 2019.
  • [36] M. Pato, R. Eleutério, R. C. Conceição and D. M. Godinho. (2023). Evaluating the performance of algorithms in axillary microwave imaging towards improved breast cancer staging. Sensors. 23(3), 1496, 2023.
  • [37] T. Reimer, M. Solis-Nepote and S. Pistorius. The application of an iterative structure to the delay-and-sum and the delay-multiply-and-sum beamformers in breast microwave imaging. Diagnostics. 10(6), 411, 2020.
  • [38] S. S. KaramFard and B. M. Asl. Fast delay-multiply-and-sum beamformer: Application to confocal microwave imaging. IEEE Antennas and Wireless Propagation Letters. 19(1), 14-18, 2019.
  • [39] M. T. Islam, M. Samsuzzaman and S. Kibria. Experimental breast phantoms for estimation of breast tumor using microwave imaging systems. IEEE Access. 6, 78587-78597, 2018.
  • [40] M. Lazebnik, E. L. Madsen, G. R. Frank, and S. C. Hagness, S. C. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine & Biology. 50(18), 4245, 2005.
  • [41] H. Zhang, T. Arslan and B. Flynn. A single antenna based microwave system for breast cancer detection: Experimental results. In 2013 Loughborough Antennas & Propagation Conference (LAPC). IEEE. pp. 477-481, 2013.
  • [42] X. Li and S. C. Hagness. A confocal microwave imaging algorithm for breast cancer detection. IEEE Microwave and wireless components letters. 11(3), 130-132, 2001.
  • [43] Y. Rahmat-Samii, D. Gies and J. Robinson. Particle swarm optimization (PSO): A novel paradigm for antenna designs. URSI Radio Science Bulletin. 2003(306), 14-22, 2003.
  • [44] A. K. Kesarwani, M. Yadav, D. Singh and G. D. Gautam. A review on the recent applications of particle swarm optimization & genetic algorithm during antenna design. Materials Today: Proceedings. 56, 3823-3825, 2022.
  • [45] N. Jin and Y. Rahmat-Samii. Particle swarm optimization for antenna designs in engineering electromagnetics. Journal of Artificial evolution and applications. 2008(1), 728929, 2008.
  • [46] H. K. Bidhendi, H. M. Jafari and R. Genov, "Ultra-wideband imaging systems for breast cancer detection." Ultra-wideband and 60 GHz communications for biomedical applications. Boston, MA: Springer US, 83-103, 2013.
  • [47] A. M. Qashlan, R. W. Aldhaher and K. H. Alharbi, "A modified compact flexible vivaldi antenna array design for microwave breast cancer detection." Applied Sciences 12.10: 4908, 2022.
  • [48] S. Kwon, H. Lee and S. Lee, "Image enhancement with Gaussian filtering in time‐domain microwave imaging system for breast cancer detection." Electronics Letters 52.5: 342-344, 2016.

Mikrodalga Meme Kanseri Tespit Sistemlerinde İki Farklı Antipodal Vivaldi Anteninin Performanslarının Karşılaştırılması

Yıl 2025, Cilt: 16 Sayı: 4, 857 - 864, 30.12.2025
https://doi.org/10.24012/dumf.1679840

Öz

Bu çalışmada, CST MWS simülasyon programı kullanılarak iki farklı antipodal Vivaldi anteni tasarlanmıştır. Önerilen antipodal Vivaldi antenleri 1,6 mm kalınlığındaki FR4 malzeme kullanılarak tasarlanmıştır. Bu malzemenin dielektrik sabiti 4,4 ve kayıp tanjant değeri 0,002'dir. Besleme portunun empedansı 50 Ω ve bakır kalınlığı 0,035 µm'dir. İlk antenin kompakt boyutu 30 mm x 36 mm, kazancı 5,04 dB ve yönlülüğü 6,48 dB'dir. İkinci antenin boyutu 38 mm x 33,5 mm, kazancı 7,68 dB ve yönlülüğü 8,77 dB'dir. Simülasyon ortamında, ayrı bir heterojen meme fantomunun içine iki farklı çaptaki küresel tümörler yerleştirilerek iki fantom oluşturulmuştur. Daha sonra simülasyon ortamında tasarlanan antenler, radar tabanlı mikrodalga meme kanseri görüntüleme tekniği (RMWI) kullanılarak fantom üzerinde tümör tespit performansı açısından test edildi. Sinyal işleme aşamalarından sonra tümör görüntüleri elde edildi. Mikrodalga görüntüleme yöntemlerinde, iki farklı antenin tümör tespitindeki performansı kazanç ve yönelim açısından incelendi. RMWI tekniği kullanılarak yapılan meme kanseri tespit çalışmasında, kazanç ve yönelim gibi anten özelliklerinin önemi vurgulandı.

Kaynakça

  • [1] American Cancer Society. Key Statistics for Breast Cancer. American Cancer Society, Atlanta, USA. 2023, https://www.breastcancer.org/facts-statistics
  • [2] World Health Organization. Breast Cancer. World Health Organization, Global Breast Cancer Initiative. 2023, https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  • [3] B. J. Pomerantz, "Imaging and Interventional Radiology for Cancer." Surgical Oncology for the General Surgeon, An Issue of Surgical Clinics, vol. 100, no. 3, pp. 499-506, 2020.
  • [4] Z. He, Z. Chen, M. Tan, S. Elingarami, Y. Liu, T. Li, Y. Deng, N. He, S. Li, J. Fu and W. Li, "A review on methods for diagnosis of breast cancer cells and tissues." Cell proliferation, 53(7), e12822, 2020.
  • [5] K. Lalitha and J. Manjula, "Non-invasive microwave head imaging to detect tumors and to estimate their size and location." Physics in Medicine 13: 100047, 2022.
  • [6] A. Naghibi, A. R. Attari, "Near-field radar-based microwave imaging for breast cancer detection: A study on resolution and image quality." IEEE Transactions on antennas and propagation 69.3: 1670-1680, 2020.
  • [7] E. C. Fear, X. Li, S.C. Hagness and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions." IEEE Transactions on biomedical engineering, 49(8), 812-822, 2002.
  • [8] D. Guliato, R. M. Rangayyan, J. D. Carvalho and S. A. Santiago. Polygonal modeling of contours of breast tumors with the preservation of spicules. IEEE Transactions on Biomedical Engineering. 55(1), 14-20, 2007.
  • [9] D. Á. Sánchez-Bayuela, N. Ghavami, G. Tiberi, L. Sani, A. Vispa, A. Bigotti, and A. S. Tagliafico. A multicentric, single arm, prospective, stratified clinical investigation to evaluate MammoWave’s ability in breast lesions detection. PLoS One. 18(7), e0288312, 2023.
  • [10] K. Singh, M. Dhayal and S. Dwivedi. Breast cancer detection by terahertz UWB microstrip patch antenna loaded with 6X6 SRR array. IETE Journal of Research. 70(5), 5295-5310, 2024.
  • [11] J. Moll, T. Slanina, J. Stindl, T. Maetz, D. Nguyen H. and V. Krozer. Temperature-induced contrast enhancement for radar-based breast tumor detection at k-band using tissue mimicking phantoms. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 7(3), 251-257, 2023.
  • [12] A. O. Asok, M. A. Shukoor and S. Dey. Breast cancer detection with metamerial enabled monopole antennas using microwave imaging. In 2022 IEEE International Conference on Emerging Electronics (ICEE). pp. 1-4, 2022.
  • [13] A. Bhaij, A. Haddad, R. Jouali, K. Sabri, and M. Aoutoul, Design and optimization of a vivaldi antenna for early cancer detection: Sar and current density analysis. Int. J. Tech. Phys. Probl. Eng. 16, 85-92, 2024.
  • [14] M. Abbak, M. Çayören and I. Akduman, "Microwave breast phantom measurements with a cavity‐backed Vivaldi antenna." IET Microwaves, Antennas & Propagation 8.13: 1127-1133, 2014.
  • [15] A. Lazaro, R. Villarino and D. Girbau. Design of tapered slot Vivaldi antenna for UWB breast cancer detection. Microwave and Optical Technology Letters, 53(3), 639-643, 2011.
  • [16] M. Salimi, S. Gheitarani Sehrigh and S. Rajebi. Design and analysis of Microstrip Patch Antenna for hyperthermia applications in breast cancer. International Journal on Technical and Physical Problems of Engineering (IJTPE). (41), 71-76, 2019.
  • [17] J. L. Rajput, A. B. Nandgaonkar, S. L. Nalbalwar, A. E. Wagh and N. G. Huilgol. Performance evaluation of compact rectangular microstrip antenna for breast hyperthermia. Int. J. Tech. Phys. Probl. Eng. 48, 87-94, 2021.
  • [18] M. A. Aldhaeebi and T. S. Almoneef. Dipole array sensor for microwave breast cancer detection. IEEE Access. 11, 91375-91384, 2023.
  • [19] Z. Hood, T. Karacolak, E. Topsakal, "A small antipodal Vivaldi antenna for ultrawide-band applications." IEEE Antennas and Wireless propagation letters 7: 656-660, 2008.
  • [20] A. Hossain, S. Pancrazio, T. Kelley and A. V. Pham. A Compact and Low-Profile High-Gain Multilayer Vivaldi Antenna Based on Gradient Metasurface Superstrates. IEEE Antennas and Wireless Propagation Letters. pp. 1-5, 2025.
  • [21] J. Harel, M. Himdi, O. Lafond, O. Clauzier, O. Vivares. A compact Vivaldi-shaped array using antipodal Vivaldi antennas to stabilize the high-frequency radiation pattern. IEEE Access. 13, 29983–29993, 2025.
  • [22] M. T. Islam, M. Z. Mahmud, N. Misran, J. I. Takada and M. Cho, "Microwave breast phantom measurement system with compact side slotted directional antenna." IEEE access 5: 5321-5330, 2017.
  • [23] R. Natarajan, J.V George, M. Kanagasabai, L. Lawrance and B. Moorthy. Modified antipodal Vivaldi antenna for ultra-wideband communications. IET Microw. Antennas Propag. 10, 401–405, 2016.
  • [24] M.T. Islam, M.Z. Mahmud, M.T Islam, M.T.S. Kibria and M. Samsuzzaman, M. A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array. Sci. Rep. 9, 15491, 2019.
  • [25] Z. Katbay, M. Le Roy, C. Olleik, A. Pérennec, S. Sadek and R. Lababidi, R. Bi-Static Time Domain Study for Microwave Breast Imaging. In 2018 18th Mediterranean Microwave Symposium (MMS) IEEE. pp. 411-414, 2018.
  • [26] M. Samsuzzaman, M.T. Islam, A.A. Shovon, R.L. Faruque and N. Misran. (2019). A 16‐modified antipodal Vivaldi antenna array for microwave‐based breast tumor imaging applications. Microwave and Optical Technology Letters. 61(9), 2110-2118, 2019.
  • [27] H. Özmen and M. B. KURT, "Radar-based microwave breast cancer detection system with a high-performanceultrawide band antipodal Vivaldi antenna." Turkish Journal of Electrical Engineering and Computer Sciences 29.5: 2326-2345, 2021.
  • [28] S. Christydass, G. Navaneethakrishnan, R. Palanisamy, C. A. Saleel, and B. S. Arputharaj. Split ring resonators and composite FR4 substrate for analysis and design of tri-band monopole antenna. Applied Physics Letters. 125(18), 2024.
  • [29] S. Z. Ali, K. Ahsan, D. ul Khairi, W. Alhalabi and M. S. Anwar. Advancements in FR4 dielectric analysis: Free space approach and measurement validation. Plos one. 19(9), e0305614, 2024.
  • [30] N. B. Kwe, V. Yadav, M. Kumar, S. V. Savilov, M. Z. A. Yahya, S. K. Singh. A comparative study of dielectric substrate materials effects on the performance of microstrip patch antenna for 5G/6G application. Journal of Materials Science: Materials in Electronics, 35(24), 1617, 2024.
  • [31] H. B. Lim, N. T. T. Nhung, E. P. Li and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm." IEEE Transactions on Biomedical Engineering 55.6: 1697-1704, 2008.
  • [32] J. Wang, M. Zhang, Y. Bai, H. Xu and Y. Fan. Distance compensation-based dual adaptive artifact removal algorithm in microwave breast tumor imaging system. Biomedical Signal Processing and Control. 88, 105598, 2024.
  • [33] K. V. Ranjitha and T. P. Pushphavathi. Analysis on improved Gaussian-Wiener filtering technique and GLCM based feature extraction for breast cancer diagnosis. Procedia Computer Science. 235, 2857-2866, 2024.
  • [34] R. Saini. Modified weiner filter for improving quality of MRI image for detection of diseases. Int. J. Adv. Res. Comput. Sci. 8, 64, 2017.
  • [35] R. Chakraborty, A. Bairagi, P. Samui and S. Das. Noise removal from digital mammogram. Eur. J. Pharm. Med. Res. 6, 312–319, 2019.
  • [36] M. Pato, R. Eleutério, R. C. Conceição and D. M. Godinho. (2023). Evaluating the performance of algorithms in axillary microwave imaging towards improved breast cancer staging. Sensors. 23(3), 1496, 2023.
  • [37] T. Reimer, M. Solis-Nepote and S. Pistorius. The application of an iterative structure to the delay-and-sum and the delay-multiply-and-sum beamformers in breast microwave imaging. Diagnostics. 10(6), 411, 2020.
  • [38] S. S. KaramFard and B. M. Asl. Fast delay-multiply-and-sum beamformer: Application to confocal microwave imaging. IEEE Antennas and Wireless Propagation Letters. 19(1), 14-18, 2019.
  • [39] M. T. Islam, M. Samsuzzaman and S. Kibria. Experimental breast phantoms for estimation of breast tumor using microwave imaging systems. IEEE Access. 6, 78587-78597, 2018.
  • [40] M. Lazebnik, E. L. Madsen, G. R. Frank, and S. C. Hagness, S. C. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine & Biology. 50(18), 4245, 2005.
  • [41] H. Zhang, T. Arslan and B. Flynn. A single antenna based microwave system for breast cancer detection: Experimental results. In 2013 Loughborough Antennas & Propagation Conference (LAPC). IEEE. pp. 477-481, 2013.
  • [42] X. Li and S. C. Hagness. A confocal microwave imaging algorithm for breast cancer detection. IEEE Microwave and wireless components letters. 11(3), 130-132, 2001.
  • [43] Y. Rahmat-Samii, D. Gies and J. Robinson. Particle swarm optimization (PSO): A novel paradigm for antenna designs. URSI Radio Science Bulletin. 2003(306), 14-22, 2003.
  • [44] A. K. Kesarwani, M. Yadav, D. Singh and G. D. Gautam. A review on the recent applications of particle swarm optimization & genetic algorithm during antenna design. Materials Today: Proceedings. 56, 3823-3825, 2022.
  • [45] N. Jin and Y. Rahmat-Samii. Particle swarm optimization for antenna designs in engineering electromagnetics. Journal of Artificial evolution and applications. 2008(1), 728929, 2008.
  • [46] H. K. Bidhendi, H. M. Jafari and R. Genov, "Ultra-wideband imaging systems for breast cancer detection." Ultra-wideband and 60 GHz communications for biomedical applications. Boston, MA: Springer US, 83-103, 2013.
  • [47] A. M. Qashlan, R. W. Aldhaher and K. H. Alharbi, "A modified compact flexible vivaldi antenna array design for microwave breast cancer detection." Applied Sciences 12.10: 4908, 2022.
  • [48] S. Kwon, H. Lee and S. Lee, "Image enhancement with Gaussian filtering in time‐domain microwave imaging system for breast cancer detection." Electronics Letters 52.5: 342-344, 2016.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomedikal Görüntüleme, Mühendislik Elektromanyetiği
Bölüm Araştırma Makalesi
Yazarlar

Şahin Yıldız 0009-0000-2139-5361

Muhammed Bahaddin Kurt 0000-0001-9047-6122

Gönderilme Tarihi 21 Nisan 2025
Kabul Tarihi 22 Eylül 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 4

Kaynak Göster

IEEE Ş. Yıldız ve M. B. Kurt, “Comparison of Performances of Two Different Antipodal Vivaldi Antennas in Microwave Breast Cancer Detection Systems”, DÜMF MD, c. 16, sy. 4, ss. 857–864, 2025, doi: 10.24012/dumf.1679840.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456