Derleme
BibTex RIS Kaynak Göster

Review: Residual Stress Measurement Methods, Reasons and Prevention Studies in Aluminium Cast Alloys

Yıl 2025, Cilt: 16 Sayı: 4, 983 - 999, 30.12.2025
https://doi.org/10.24012/dumf.1697102

Öz

This study investigates the causes, measurement methods, and prevention strategies of residual stresses occurring in cast aluminum alloys during the manufacturing process. Residual stresses are elastic internal stresses that form in materials without any external load, typically due to processes like heat treatment, machining, or welding. These stresses directly affect the fatigue life, mechanical performance, and dimensional accuracy of components. In particular, sudden temperature changes during solution treatment and quenching in T6 heat treatment processes can lead to significant residual stresses. The study provides a detailed comparison of destructive methods (e.g., hole-drilling, ring-core, contour methods), non-destructive techniques (e.g., X-ray diffraction, ultrasonic testing, neutron diffraction), and analytical approaches using finite element modeling. The strengths and limitations of each method are discussed. In terms of fatigue performance, tensile residual stresses can be detrimental, while compressive stresses can enhance service life. Thus, accurate measurement and effective control of these stresses are crucial. Techniques such as stress relief annealing, low-temperature aging, and mechanical surface treatments are highlighted as effective in reducing residual stress. In conclusion, managing residual stresses carefully is essential for producing more durable and reliable engineering components.

Kaynakça

  • [1] Tabatabaeian, A., Ghasemi, A. R., Shokrieh, M. M., Marzbanrad, B., Baraheni, M., & Fotouhi, M. (2022). Residual Stress in Engineering Materials: A Review. In Advanced Engineering Materials (Vol. 24, Issue 3). https://doi.org/10.1002/adem.202100786
  • [2] Akbari, S., Taheri-Behrooz, F., & Shokrieh, M. M. (2014). Characterization of residual stresses in a thin-walled filament wound carbon/epoxy ring using incremental hole drilling method. Composites Science and Technology, 94, 8–15. https://doi.org/10.1016/j.compscitech.2014.01.008
  • [3] Ahn, S. min, Park, S. Y., Kim, Y. C., Lee, K. S., & Kim, J. Y. (2015). Surface residual stress in soda-lime glass evaluated using instrumented spherical indentation testing. Journal of Materials Science, 50(23), 7752–7759. https://doi.org/10.1007/s10853-015-9345-x
  • [4] Serrano-Munoz, I., Fritsch, T., Mishurova, T., Trofimov, A., Apel, D., Ulbricht, A., Kromm, A., Hesse, R., Evans, A., & Bruno, G. (2021). On the interplay of microstructure and residual stress in LPBF IN718. Journal of Materials Science, 56(9), 5845–5867. https://doi.org/10.1007/s10853-020-05553-y
  • [5] Carpenter, H. W., Reid, R. G., & Paskaramoorthy, R. (2015). The effect of residual stresses and wind configuration on the allowable pressure of thick-walled GFRP pipes with closed ends. International Journal of Mechanics and Materials in Design, 11(4), 455–462. https://doi.org/10.1007/s10999-014-9280-z
  • [6] Alipooramirabad, H., Kianfar, S., Paradowska, A., & Ghomashchi, R. (2024). Residual stress measurement in engine block—an overview. In International Journal of Advanced Manufacturing Technology (Vol. 131, Issue 1, pp. 1–27). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00170-024-13071-3
  • [7] Carrera, E., Rodríguez, A., Talamantes, J., Valtierra, S., & Colás, R. (2007). Measurement of residual stresses in cast aluminium engine blocks. Journal of Materials Processing Technology, 189(1–3), 206–210. https://doi.org/10.1016/j.jmatprotec.2007.01.023
  • [8] Olson, M. D., DeWald, A. T., & Hill, M. R. (2022). Measurement Layout for Residual Stress Mapping Using Slitting. Experimental Mechanics, 62(3), 393–402. https://doi.org/10.1007/s11340-021-00791-w
  • [9] Reid, R. G., & Paskaramoorthy, R. (2009). A novel method to measure residual stresses in unidirectional GFRP. Composite Structures, Volume 88, Issue 3, May 2009, Pages 388-393. https://doi.org/10.1016/j.compstruct.2008.04.015
  • [10] Kandil, F. A., Lord, J. D., Fry, A. T., & Grant, P. v. (2001). A Review of Residual Stress Measurement Methods-A Guide to Technique Selection. by.
  • [11] Li, K., Xiao, B., & Wang, Q. (2009). Residual Stresses in As-Quenched Aluminum Castings. International Journal of Materials and Manufacturing, 1(1), 725–731. https://doi.org/10.2307/26282709
  • [12] Guo, J., Fu, H., Pan, B., & Kang, R. (2021). Recent progress of residual stress measurement methods: A review. In Chinese Journal of Aeronautics (Vol. 34, Issue 2, pp. 54–78). Elsevier B.V. https://doi.org/10.1016/j.cja.2019.10.010
  • [13] Li, X., Liu, J., Wu, H., Miao, K., Wu, H., Li, R., Liu, C., Fang, W., & Fan, G. (2024). Research progress of residual stress measurement methods. In Heliyon (Vol. 10, Issue 7). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2024.e28348
  • [14] Rossini, N. S., Dassisti, M., Benyounis, K. Y., & Olabi, A. G. (2012). Methods of measuring residual stresses in components. In Materials and Design (Vol. 35, pp. 572–588). https://doi.org/10.1016/j.matdes.2011.08.022
  • [15] Wong, W., & Hill, M. R. (2013). Superposition and Destructive Residual Stress Measurements. Experimental Mechanics, 53(3), 339–344. https://doi.org/10.1007/s11340-012-9636-y
  • [16] Schajer, G. S. (2010). Relaxation Methods for Measuring Residual Stresses: Techniques and Opportunities. Experimental Mechanics, 50(8), 1117–1127. https://doi.org/10.1007/s11340-010-9386-7
  • [17] Shokrieh, M. M., & Ghasemi K., A. R. (2007). Determination of calibration factors of the hole drilling method for orthotropic composites using an exact solution. Journal of Composite Materials, 41(19), 2293–2311. https://doi.org/10.1177/0021998307075443
  • [18] Ghasemi, A. R., Taheri-Behrooz, F., & Shokrieh, M. M. (2014). Determination of non-uniform residual stresses in laminated composites using integral hole drilling method: Experimental evaluation. Journal of Composite Materials, 48(4), 415–425. https://doi.org/10.1177/0021998312473858
  • [19] Magnier, A., Scholtes, B., & Niendorf, T. (2017). Analysis of residual stress profiles in plastic materials using the hole drilling method – Influence factors and practical aspects. Polymer Testing, 59, 29–37. https://doi.org/10.1016/j.polymertesting.2016.12.025
  • [20] Wu, T., Tinkloh, S. R., Tröster, T., Zinn, W., & Niendorf, T. (2020). Determination and validation of residual stresses in CFRP/metal hybrid components using the incremental hole drilling method. Journal of Composites Science, 4(3). https://doi.org/10.3390/jcs4030143
  • [21] Flaman, M.T. Brief investigation of induced drilling stresses in the center-hole method of residual-stress measurement. Experimental Mechanics, 22, 26–30 (1982). https://doi.org/10.1007/BF02325700
  • [22] Scafidi, M., Valentini, E., & Zuccarello, B. (2011). Error and uncertainty analysis of the residual stresses computed by using the hole drilling method. Strain, 47(4), 301–312. https://doi.org/10.1111/j.1475-1305.2009.00688.x
  • [23] Beghini, M., Bertini, L., & Mori, L. F. (2010). Evaluating non-uniform residual stress by the hole-drilling method with concentric and eccentric holes. Part II: Application of the influence functions to the inverse problem. Strain, 46(4), 337–346. https://doi.org/10.1111/j.1475-1305.2009.00684.x
  • [24] Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method. (2020). ASTM International. https://doi.org/10.1520/E0837-20
  • [25] Kim, K., & Jung, H. (2016). Nondestructive Testing of Residual Stress on the Welded Part of Butt-welded A36 Plates Using Electronic Speckle Pattern Interferometry. Nuclear Engineering and Technology, 48(1), 259–267. https://doi.org/10.1016/j.net.2015.10.008
  • [26] Cao, Q., Li, Y., & Xie, H. (2020). Orientation-Identified virtual fields method combined with moiré interferometry for mechanical characterization of single crystal Ni-based superalloys. Optics and Lasers in Engineering, 125. https://doi.org/10.1016/j.optlaseng.2019.105854
  • [27] Yoon, S., Jung, H. J., Knowles, J. C., & Lee, H. H. (2021). Digital image correlation in dental materials and related research: A review. In Dental Materials (Vol. 37, Issue 5, pp. 758–771). Elsevier Inc. https://doi.org/10.1016/j.dental.2021.02.024
  • [28] Akdeniz, Y. (2012). Taşlama Sonrası Kalın Camsı Metalde Olusan Kalıntı Gerilmenin Delik Delme Yöntemiyle İncelenmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul
  • [29] Leggatt, R. H., Smith, D. J., Smith, S. D., & Faure, F. (1996). Development and experimental validation of the deep hole method for residual stress measurement. The Journal of Strain Analysis for Engineering Design. Volume 31, Issue 3 https://doi.org/10.1243/03093247V313177
  • [30] Hacini, L., van Lê, N., & Bocher, P. (2009). Evaluation of residual stresses induced by robotized hammer peening by the contour method. Experimental Mechanics, 49(6), 775–783. https://doi.org/10.1007/s11340-008-9205-6
  • [31] Prime, M. B. (2001). Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. Journal of Engineering Materials and Technology, 123(2), 162–168. https://doi.org/10.1115/1.1345526
  • [32] Ekmekçi, B. (2004). Theoretical and Experimental Investigation of Residual Stresses in Electric Discharge Machining. PhD Thesis, Middle East Technical University, Graduate School of Natural And Applied Sciences, Ankara
  • [33] Tebedge, N., Alpsten, G. & Tall, L. (1973) Residual-stress measurement by the sectioning method. Experimental Mechanics 13, 88–96. https://doi.org/10.1007/BF02322389
  • [34] Dege, B. (2013). TiN İnce Filmlerde Bias Voltajına Bağlı Olarak Kalıntı Gerilme Değişiminin İncelenmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul
  • [35] Arnold, D. Gordon., Beauchamp, T. L., & Bowie, N. E. (2014). Ethical theory and business. Pearson Education Limited.
  • [36] Prevéy, P. S. (1986). X-Ray Diffraction Residual Stress Techniques. Metals Handbook, 10, American Society for Metals, 1986, pp. 380-392.
  • [37] Venkata Ramana, P., Madhusudhan Reddy, G., Mohandas, T., & Gupta, A. V. S. S. K. S. (2010). Microstructure and residual stress distribution of similar and dissimilar electron beam welds - Maraging steel to medium alloy medium carbon steel. Materials and Design, 31(2), 749–760. https://doi.org/10.1016/j.matdes.2009.08.007
  • [38] Baldi, A. (2016). Using Optical Interferometry to Restart the Ring-Core Method. Experimental Mechanics, 56(7), 1191–1202. https://doi.org/10.1007/s11340-016-0163-0
  • [39] Masláková, K., Trebuňa, F., Frankovský, P., & Binda, M. (2012). Applications of the strain gauge for determination of residual stresses using Ring-core method. Procedia Engineering, 48, 396–401. https://doi.org/10.1016/j.proeng.2012.09.531
  • [40] Shokrieh, M. M., & Ghasemi K., A. R. (2007). Determination of calibration factors of the hole drilling method for orthotropic composites using an exact solution. Journal of Composite Materials, 41(19), 2293–2311. https://doi.org/10.1177/0021998307075443
  • [41] Hosseinzadeh, F., Hossain, S., Truman, C. E., & Smith, D. J. (2014). Measurement and Prediction of Residual Stresses in Quenched Stainless Steel Components. Experimental Mechanics, 54(7), 1151–1162. https://doi.org/10.1007/s11340-014-9890-2
  • [42] Brown, D. W., Holden, T. M., Clausen, B., Prime, M. B., Sisneros, T. A., Swenson, H., & Vaja, J. (2011). Critical comparison of two independent measurements of residual stress in an electron-beam welded uranium cylinder: Neutron diffraction and the contour method. Acta Materialia, 59(3), 864–873. https://doi.org/10.1016/j.actamat.2010.09.022
  • [43] D’Elia, C. R., Carlson, S. S., Stanfield, M. L., Prime, M. B., Araújo de Oliveira, J., Spradlin, T. J., Lévesque, J. B., & Hill, M. R. (2020). Interlaboratory Reproducibility of Contour Method Data Analysis and Residual Stress Calculation. Experimental Mechanics, 60(6), 833–845. https://doi.org/10.1007/s11340-020-00599-0
  • [44] Wang, H., Kim, D. K., Woo, W., Choi, S. H., Lee, S. Y., & Hwang, S. K. (2020). A new contour method for rapid evaluation of the cross-sectional residual stress distribution in complex geometries using a 3D scanner. Journal of Mechanical Science and Technology, 34(5), 1989–1996. https://doi.org/10.1007/s12206-020-0420-0
  • [45] Robinson, J. S., & Redington, W. (2015). The influence of alloy composition on residual stresses in heat treated aluminium alloys. Materials Characterization, 105, 47–55. https://doi.org/10.1016/j.matchar.2015.04.017
  • [46] Javadi, Y., Akhlaghi, M., & Najafabadi, M. A. (2013). Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates. Materials and Design, 45, 628–642. https://doi.org/10.1016/j.matdes.2012.09.038
  • [47] Zhan, Y., Liu, C., Kong, X., & Lin, Z. (2017). Experiment and numerical simulation for laser ultrasonic measurement of residual stress. Ultrasonics, 73, 271–276. https://doi.org/10.1016/j.ultras.2016.08.013
  • [48] Smith, M., Levesque, J. B., Bichler, L., Sediako, D., Gholipour, J., & Wanjara, P. (2017). Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches. Materials Science and Engineering: A, 691, 168–179. https://doi.org/10.1016/j.msea.2017.03.038
  • [49] Özel, A., Sadri S. (1998). Effects of Residual Stresses Caused by Different Types of Loading on Silent Chain Strength. Turkish Journal of Engineering and Environmental Sciences 22 461-470.
  • [50] Zhang, K., Yang, Z., & Li, Y. (2013). A method for predicting the curing residual stress for CFRP/Al adhesive single-lap joints. International Journal of Adhesion and Adhesives, 46, 7–13. https://doi.org/10.1016/j.ijadhadh.2013.05.010
  • [51] Cai, Z., Mayr, P., Fernandez, R., Robbe, S., Usmial, E., Lefebvre, F., To, L., Schajer, G. S., Withers, P. J., & Roy, M. J. (2024). Residual Stress Determination of Cast Aluminium Benchmark Components Using Strain Relief Techniques. Experimental Mechanics, 64(3), 441–452. https://doi.org/10.1007/s11340-024-01033-5
  • [52] Johnson, E. M., Watkins, T. R., Schmidlin, J. E., & Dutler, S. A. (2012). A benchmark study on casting residual stress. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 43(5), 1487–1496. https://doi.org/10.1007/s11661-011-0907-5
  • [53] Menne, R.J., Weiss, U., Brohmer, A., Egner-Walter A., Weber M., P. Oelling P. (2007) Implementation of Casting Simulation for Increased Engine Performance and Reduced Development Time and Costs-Selected Examples from FORD R&D Engine Projects. (n.d.). 28. Internationales Wiener Motorensymposium.
  • [54] Jiang, X., Kong, X., Zhang, Z., Wu, Z., Ding, Z., & Guo, M. (2020). Modeling the effects of Undeformed Chip Volume (UCV) on residual stresses during the milling of curved thin-walled parts. International Journal of Mechanical Sciences, 167. https://doi.org/10.1016/j.ijmecsci.2019.105162
  • [55] Moon, J. H., Baek, S. M., Lee, S. G., Seong, Y., Amanov, A., Lee, S., & Kim, H. S. (2019). Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification. Materials Research Letters, 7(3), 97–102. https://doi.org/10.1080/21663831.2018.1560370
  • [56] Robinson, J. S., Tanner, D. A., Truman, C. E., & Wimpory, R. C. (2011). Measurement and Prediction of Machining Induced Redistribution of Residual Stress in the Aluminium Alloy 7449. Experimental Mechanics, 51(6), 981–993. https://doi.org/10.1007/s11340-010-9389-4
  • [57] Li, P., Maijer, D. M., Lindley, T. C., & Lee, P. D. (2007). Simulating the residual stress in an A356 automotive wheel and its impact on fatigue life. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 38(4), 505–515. https://doi.org/10.1007/s11663-007-9050-5
  • [58] Godlewski, L. A., Su, X., Pollock, T. M., & Allison, J. E. (2013). The effect of aging on the relaxation of residual stress in cast aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 44(10), 4809–4818. https://doi.org/10.1007/s11661-013-1800-1
  • [59] Zhang, Z., Li, L., Yang, Y., He, N., & Zhao, W. (2014). Machining distortion minimization for the manufacturing of aeronautical structure. International Journal of Advanced Manufacturing Technology, 73(9–12), 1765–1773. https://doi.org/10.1007/s00170-014-5994-1
  • [60] Masoudi, S., Amini, S., Saeidi, E., & Eslami-Chalander, H. (2015). Effect of machining-induced residual stress on the distortion of thin-walled parts. International Journal of Advanced Manufacturing Technology, 76(1–4), 597–608. https://doi.org/10.1007/s00170-014-6281-x
  • [61] Mantle, A. L., & Aspinwall, D. K. (2001). Surface integrity of a high speed milled gamma titanium aluminide. Journal of Materials Processing Technology. Volume 118, Issues 1–3, 3 December 2001, Pages 143-150. https://doi.org/10.1016/S0924-0136(01)00914-1
  • [62] Liu, C. R., & Guo, Y. B. (2000). Finite element analysis of the effect of sequential cuts and toolchip friction on residual stresses in a machined layer. In International Journal of Mechanical Sciences (Vol. 42).
  • [63] Prime, M. B. (2018) The Two-Way Relationship Between Residual Stress and Fatigue Fracture. Fracture, Fatigue, Failure and Damage Evolution, Volume 7, Springer International Publishing
  • [64] M, P., Prasad, A. K., & Paswan, M. K. (2020). Durability improvement of axle housings by compressive residual stress inducement. Applied Materials Today, 19. https://doi.org/10.1016/j.apmt.2020.100584
  • [65] Kutsal, U., Arslan, Y., Ozaydin, O., Akyildiz, Y., Yigit Kaya, A., & Ertugrul, O. (2024). Heat Treatment Simulation of Aluminum Alloy Wheels and Investigation of Process Steps. International Journal of Metalcasting, 18(2), 1556–1572. https://doi.org/10.1007/s40962-023-01132-4
  • [66] Lin, J., Ma, N., Liu, X., & Lei, Y. (2020). Modification of residual stress distribution in welded joint of titanium alloy with multi electron beam heating. Journal of Materials Processing Technology, 278. https://doi.org/10.1016/j.jmatprotec.2019.116504
  • [67] Yang, X., Zhu, J., Nong, Z., Lai, Z., & He, D. (2013). FEM simulation of quenching process in A357 aluminum alloy cylindrical bars and reduction of quench residual stress through cold stretching process. Computational Materials Science, 69, 396–413. https://doi.org/10.1016/j.commatsci.2012.11.024
  • [68] Kattoura, M., Telang, A., Mannava, S. R., Qian, D., & Vasudevan, V. K. (2018). Effect of Ultrasonic Nanocrystal Surface Modification on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy. Materials Science and Engineering: A, 711, 364–377. https://doi.org/10.1016/j.msea.2017.11.043
  • [69] Wyatt, J. E., Berry, J. T., & Williams, A. R. (2007). Residual stresses in aluminum castings. Journal of Materials Processing Technology, 191(1–3), 170–173. https://doi.org/10.1016/j.jmatprotec.2007.03.018
  • [70] Roveda, I., Serrano-Munoz, I., Haubrich, J., Requena, G., & Madia, M. (2023). Influence of post-process heat treatments on the fatigue crack propagation behaviour of a PBF-LB/M AlSi10Mg alloy. International Journal of Fatigue, 175. https://doi.org/10.1016/j.ijfatigue.2023.107808
  • [71] Robinson, J. S., & Tanner, D. A. (2003). Residual stress development and relief in high strength aluminium alloys using standard and retrogression thermal treatments. Materials Science and Technology, 19(4), 512–518. https://doi.org/10.1179/026708303225001939
  • [72] Mohamed, Serageldin & Samuel, A. & Doty, H. & Valtierra, Salvador & Samuel, Fawzy. (2020). Generation and Relaxation of Residual Stresses in Automotive Cylinder Blocks. Automotive System Engineering-New Methods and Optimal Solutions 10.5772/intechopen.93664.

İnceleme: Döküm Alüminyum Alaşımlarında Kalıntı Gerilme Ölçüm Yöntemleri, Nedenleri ve Önleme Çalışmaları

Yıl 2025, Cilt: 16 Sayı: 4, 983 - 999, 30.12.2025
https://doi.org/10.24012/dumf.1697102

Öz

Bu çalışma, döküm alüminyum alaşımlarında üretim sürecinde ortaya çıkan kalıntı gerilmelerin nedenlerini, ölçüm yöntemlerini ve önleme stratejilerini incelemektedir. Kalıntı gerilmeler; ısıl işlem, talaşlı imalat, kaynak gibi işlemlerden sonra, dış yük olmadan malzeme içinde oluşan elastik gerilmelerdir. Bu gerilmeler, parçanın yorulma ömrünü, mekanik performansını ve boyutsal doğruluğunu doğrudan etkiler. Özellikle T6 gibi ısıl işlem süreçlerinde, su verme sırasında meydana gelen ani sıcaklık değişimleri ciddi kalıntı gerilmeler yaratabilir. Çalışmada delik delme, halka çekirdek ve kontur gibi tahribatlı; X-ışını kırınımı, ultrasonik ve nötron kırınımı gibi tahribatsız yöntemler detaylı şekilde incelenmiş, bunların avantaj ve dezavantajları karşılaştırılmıştır. Ayrıca, sonlu elemanlar analizleriyle yapılan analitik ölçüm yöntemlerine de yer verilmiştir. Yorulma ömrü açısından, çeki kalıntı gerilmeleri zararlı olurken, bası gerilmeleri ömrü artırabilir. Bu nedenle kalıntı gerilmelerin ölçümü kadar kontrolü de önemlidir. Gerilme giderme tavlaması, düşük sıcaklıkta yaşlandırma ve yüzey işlemleri gibi yöntemlerle bu gerilmeler azaltılabilir. Sonuç olarak, kalıntı gerilmelerin dikkatli yönetimi, daha dayanıklı ve güvenilir mühendislik parçaları üretimini mümkün kılar.

Etik Beyan

Bu calisma etik acidan uygun hazirlanmistir.

Destekleyen Kurum

Dokuz Eylül Üniversitesi

Teşekkür

Yazarlar, Dokuz Eylül Üniversitesi'ndeki is arkadaslarina tesekkür ederler.

Kaynakça

  • [1] Tabatabaeian, A., Ghasemi, A. R., Shokrieh, M. M., Marzbanrad, B., Baraheni, M., & Fotouhi, M. (2022). Residual Stress in Engineering Materials: A Review. In Advanced Engineering Materials (Vol. 24, Issue 3). https://doi.org/10.1002/adem.202100786
  • [2] Akbari, S., Taheri-Behrooz, F., & Shokrieh, M. M. (2014). Characterization of residual stresses in a thin-walled filament wound carbon/epoxy ring using incremental hole drilling method. Composites Science and Technology, 94, 8–15. https://doi.org/10.1016/j.compscitech.2014.01.008
  • [3] Ahn, S. min, Park, S. Y., Kim, Y. C., Lee, K. S., & Kim, J. Y. (2015). Surface residual stress in soda-lime glass evaluated using instrumented spherical indentation testing. Journal of Materials Science, 50(23), 7752–7759. https://doi.org/10.1007/s10853-015-9345-x
  • [4] Serrano-Munoz, I., Fritsch, T., Mishurova, T., Trofimov, A., Apel, D., Ulbricht, A., Kromm, A., Hesse, R., Evans, A., & Bruno, G. (2021). On the interplay of microstructure and residual stress in LPBF IN718. Journal of Materials Science, 56(9), 5845–5867. https://doi.org/10.1007/s10853-020-05553-y
  • [5] Carpenter, H. W., Reid, R. G., & Paskaramoorthy, R. (2015). The effect of residual stresses and wind configuration on the allowable pressure of thick-walled GFRP pipes with closed ends. International Journal of Mechanics and Materials in Design, 11(4), 455–462. https://doi.org/10.1007/s10999-014-9280-z
  • [6] Alipooramirabad, H., Kianfar, S., Paradowska, A., & Ghomashchi, R. (2024). Residual stress measurement in engine block—an overview. In International Journal of Advanced Manufacturing Technology (Vol. 131, Issue 1, pp. 1–27). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00170-024-13071-3
  • [7] Carrera, E., Rodríguez, A., Talamantes, J., Valtierra, S., & Colás, R. (2007). Measurement of residual stresses in cast aluminium engine blocks. Journal of Materials Processing Technology, 189(1–3), 206–210. https://doi.org/10.1016/j.jmatprotec.2007.01.023
  • [8] Olson, M. D., DeWald, A. T., & Hill, M. R. (2022). Measurement Layout for Residual Stress Mapping Using Slitting. Experimental Mechanics, 62(3), 393–402. https://doi.org/10.1007/s11340-021-00791-w
  • [9] Reid, R. G., & Paskaramoorthy, R. (2009). A novel method to measure residual stresses in unidirectional GFRP. Composite Structures, Volume 88, Issue 3, May 2009, Pages 388-393. https://doi.org/10.1016/j.compstruct.2008.04.015
  • [10] Kandil, F. A., Lord, J. D., Fry, A. T., & Grant, P. v. (2001). A Review of Residual Stress Measurement Methods-A Guide to Technique Selection. by.
  • [11] Li, K., Xiao, B., & Wang, Q. (2009). Residual Stresses in As-Quenched Aluminum Castings. International Journal of Materials and Manufacturing, 1(1), 725–731. https://doi.org/10.2307/26282709
  • [12] Guo, J., Fu, H., Pan, B., & Kang, R. (2021). Recent progress of residual stress measurement methods: A review. In Chinese Journal of Aeronautics (Vol. 34, Issue 2, pp. 54–78). Elsevier B.V. https://doi.org/10.1016/j.cja.2019.10.010
  • [13] Li, X., Liu, J., Wu, H., Miao, K., Wu, H., Li, R., Liu, C., Fang, W., & Fan, G. (2024). Research progress of residual stress measurement methods. In Heliyon (Vol. 10, Issue 7). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2024.e28348
  • [14] Rossini, N. S., Dassisti, M., Benyounis, K. Y., & Olabi, A. G. (2012). Methods of measuring residual stresses in components. In Materials and Design (Vol. 35, pp. 572–588). https://doi.org/10.1016/j.matdes.2011.08.022
  • [15] Wong, W., & Hill, M. R. (2013). Superposition and Destructive Residual Stress Measurements. Experimental Mechanics, 53(3), 339–344. https://doi.org/10.1007/s11340-012-9636-y
  • [16] Schajer, G. S. (2010). Relaxation Methods for Measuring Residual Stresses: Techniques and Opportunities. Experimental Mechanics, 50(8), 1117–1127. https://doi.org/10.1007/s11340-010-9386-7
  • [17] Shokrieh, M. M., & Ghasemi K., A. R. (2007). Determination of calibration factors of the hole drilling method for orthotropic composites using an exact solution. Journal of Composite Materials, 41(19), 2293–2311. https://doi.org/10.1177/0021998307075443
  • [18] Ghasemi, A. R., Taheri-Behrooz, F., & Shokrieh, M. M. (2014). Determination of non-uniform residual stresses in laminated composites using integral hole drilling method: Experimental evaluation. Journal of Composite Materials, 48(4), 415–425. https://doi.org/10.1177/0021998312473858
  • [19] Magnier, A., Scholtes, B., & Niendorf, T. (2017). Analysis of residual stress profiles in plastic materials using the hole drilling method – Influence factors and practical aspects. Polymer Testing, 59, 29–37. https://doi.org/10.1016/j.polymertesting.2016.12.025
  • [20] Wu, T., Tinkloh, S. R., Tröster, T., Zinn, W., & Niendorf, T. (2020). Determination and validation of residual stresses in CFRP/metal hybrid components using the incremental hole drilling method. Journal of Composites Science, 4(3). https://doi.org/10.3390/jcs4030143
  • [21] Flaman, M.T. Brief investigation of induced drilling stresses in the center-hole method of residual-stress measurement. Experimental Mechanics, 22, 26–30 (1982). https://doi.org/10.1007/BF02325700
  • [22] Scafidi, M., Valentini, E., & Zuccarello, B. (2011). Error and uncertainty analysis of the residual stresses computed by using the hole drilling method. Strain, 47(4), 301–312. https://doi.org/10.1111/j.1475-1305.2009.00688.x
  • [23] Beghini, M., Bertini, L., & Mori, L. F. (2010). Evaluating non-uniform residual stress by the hole-drilling method with concentric and eccentric holes. Part II: Application of the influence functions to the inverse problem. Strain, 46(4), 337–346. https://doi.org/10.1111/j.1475-1305.2009.00684.x
  • [24] Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method. (2020). ASTM International. https://doi.org/10.1520/E0837-20
  • [25] Kim, K., & Jung, H. (2016). Nondestructive Testing of Residual Stress on the Welded Part of Butt-welded A36 Plates Using Electronic Speckle Pattern Interferometry. Nuclear Engineering and Technology, 48(1), 259–267. https://doi.org/10.1016/j.net.2015.10.008
  • [26] Cao, Q., Li, Y., & Xie, H. (2020). Orientation-Identified virtual fields method combined with moiré interferometry for mechanical characterization of single crystal Ni-based superalloys. Optics and Lasers in Engineering, 125. https://doi.org/10.1016/j.optlaseng.2019.105854
  • [27] Yoon, S., Jung, H. J., Knowles, J. C., & Lee, H. H. (2021). Digital image correlation in dental materials and related research: A review. In Dental Materials (Vol. 37, Issue 5, pp. 758–771). Elsevier Inc. https://doi.org/10.1016/j.dental.2021.02.024
  • [28] Akdeniz, Y. (2012). Taşlama Sonrası Kalın Camsı Metalde Olusan Kalıntı Gerilmenin Delik Delme Yöntemiyle İncelenmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul
  • [29] Leggatt, R. H., Smith, D. J., Smith, S. D., & Faure, F. (1996). Development and experimental validation of the deep hole method for residual stress measurement. The Journal of Strain Analysis for Engineering Design. Volume 31, Issue 3 https://doi.org/10.1243/03093247V313177
  • [30] Hacini, L., van Lê, N., & Bocher, P. (2009). Evaluation of residual stresses induced by robotized hammer peening by the contour method. Experimental Mechanics, 49(6), 775–783. https://doi.org/10.1007/s11340-008-9205-6
  • [31] Prime, M. B. (2001). Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. Journal of Engineering Materials and Technology, 123(2), 162–168. https://doi.org/10.1115/1.1345526
  • [32] Ekmekçi, B. (2004). Theoretical and Experimental Investigation of Residual Stresses in Electric Discharge Machining. PhD Thesis, Middle East Technical University, Graduate School of Natural And Applied Sciences, Ankara
  • [33] Tebedge, N., Alpsten, G. & Tall, L. (1973) Residual-stress measurement by the sectioning method. Experimental Mechanics 13, 88–96. https://doi.org/10.1007/BF02322389
  • [34] Dege, B. (2013). TiN İnce Filmlerde Bias Voltajına Bağlı Olarak Kalıntı Gerilme Değişiminin İncelenmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul
  • [35] Arnold, D. Gordon., Beauchamp, T. L., & Bowie, N. E. (2014). Ethical theory and business. Pearson Education Limited.
  • [36] Prevéy, P. S. (1986). X-Ray Diffraction Residual Stress Techniques. Metals Handbook, 10, American Society for Metals, 1986, pp. 380-392.
  • [37] Venkata Ramana, P., Madhusudhan Reddy, G., Mohandas, T., & Gupta, A. V. S. S. K. S. (2010). Microstructure and residual stress distribution of similar and dissimilar electron beam welds - Maraging steel to medium alloy medium carbon steel. Materials and Design, 31(2), 749–760. https://doi.org/10.1016/j.matdes.2009.08.007
  • [38] Baldi, A. (2016). Using Optical Interferometry to Restart the Ring-Core Method. Experimental Mechanics, 56(7), 1191–1202. https://doi.org/10.1007/s11340-016-0163-0
  • [39] Masláková, K., Trebuňa, F., Frankovský, P., & Binda, M. (2012). Applications of the strain gauge for determination of residual stresses using Ring-core method. Procedia Engineering, 48, 396–401. https://doi.org/10.1016/j.proeng.2012.09.531
  • [40] Shokrieh, M. M., & Ghasemi K., A. R. (2007). Determination of calibration factors of the hole drilling method for orthotropic composites using an exact solution. Journal of Composite Materials, 41(19), 2293–2311. https://doi.org/10.1177/0021998307075443
  • [41] Hosseinzadeh, F., Hossain, S., Truman, C. E., & Smith, D. J. (2014). Measurement and Prediction of Residual Stresses in Quenched Stainless Steel Components. Experimental Mechanics, 54(7), 1151–1162. https://doi.org/10.1007/s11340-014-9890-2
  • [42] Brown, D. W., Holden, T. M., Clausen, B., Prime, M. B., Sisneros, T. A., Swenson, H., & Vaja, J. (2011). Critical comparison of two independent measurements of residual stress in an electron-beam welded uranium cylinder: Neutron diffraction and the contour method. Acta Materialia, 59(3), 864–873. https://doi.org/10.1016/j.actamat.2010.09.022
  • [43] D’Elia, C. R., Carlson, S. S., Stanfield, M. L., Prime, M. B., Araújo de Oliveira, J., Spradlin, T. J., Lévesque, J. B., & Hill, M. R. (2020). Interlaboratory Reproducibility of Contour Method Data Analysis and Residual Stress Calculation. Experimental Mechanics, 60(6), 833–845. https://doi.org/10.1007/s11340-020-00599-0
  • [44] Wang, H., Kim, D. K., Woo, W., Choi, S. H., Lee, S. Y., & Hwang, S. K. (2020). A new contour method for rapid evaluation of the cross-sectional residual stress distribution in complex geometries using a 3D scanner. Journal of Mechanical Science and Technology, 34(5), 1989–1996. https://doi.org/10.1007/s12206-020-0420-0
  • [45] Robinson, J. S., & Redington, W. (2015). The influence of alloy composition on residual stresses in heat treated aluminium alloys. Materials Characterization, 105, 47–55. https://doi.org/10.1016/j.matchar.2015.04.017
  • [46] Javadi, Y., Akhlaghi, M., & Najafabadi, M. A. (2013). Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates. Materials and Design, 45, 628–642. https://doi.org/10.1016/j.matdes.2012.09.038
  • [47] Zhan, Y., Liu, C., Kong, X., & Lin, Z. (2017). Experiment and numerical simulation for laser ultrasonic measurement of residual stress. Ultrasonics, 73, 271–276. https://doi.org/10.1016/j.ultras.2016.08.013
  • [48] Smith, M., Levesque, J. B., Bichler, L., Sediako, D., Gholipour, J., & Wanjara, P. (2017). Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches. Materials Science and Engineering: A, 691, 168–179. https://doi.org/10.1016/j.msea.2017.03.038
  • [49] Özel, A., Sadri S. (1998). Effects of Residual Stresses Caused by Different Types of Loading on Silent Chain Strength. Turkish Journal of Engineering and Environmental Sciences 22 461-470.
  • [50] Zhang, K., Yang, Z., & Li, Y. (2013). A method for predicting the curing residual stress for CFRP/Al adhesive single-lap joints. International Journal of Adhesion and Adhesives, 46, 7–13. https://doi.org/10.1016/j.ijadhadh.2013.05.010
  • [51] Cai, Z., Mayr, P., Fernandez, R., Robbe, S., Usmial, E., Lefebvre, F., To, L., Schajer, G. S., Withers, P. J., & Roy, M. J. (2024). Residual Stress Determination of Cast Aluminium Benchmark Components Using Strain Relief Techniques. Experimental Mechanics, 64(3), 441–452. https://doi.org/10.1007/s11340-024-01033-5
  • [52] Johnson, E. M., Watkins, T. R., Schmidlin, J. E., & Dutler, S. A. (2012). A benchmark study on casting residual stress. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 43(5), 1487–1496. https://doi.org/10.1007/s11661-011-0907-5
  • [53] Menne, R.J., Weiss, U., Brohmer, A., Egner-Walter A., Weber M., P. Oelling P. (2007) Implementation of Casting Simulation for Increased Engine Performance and Reduced Development Time and Costs-Selected Examples from FORD R&D Engine Projects. (n.d.). 28. Internationales Wiener Motorensymposium.
  • [54] Jiang, X., Kong, X., Zhang, Z., Wu, Z., Ding, Z., & Guo, M. (2020). Modeling the effects of Undeformed Chip Volume (UCV) on residual stresses during the milling of curved thin-walled parts. International Journal of Mechanical Sciences, 167. https://doi.org/10.1016/j.ijmecsci.2019.105162
  • [55] Moon, J. H., Baek, S. M., Lee, S. G., Seong, Y., Amanov, A., Lee, S., & Kim, H. S. (2019). Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification. Materials Research Letters, 7(3), 97–102. https://doi.org/10.1080/21663831.2018.1560370
  • [56] Robinson, J. S., Tanner, D. A., Truman, C. E., & Wimpory, R. C. (2011). Measurement and Prediction of Machining Induced Redistribution of Residual Stress in the Aluminium Alloy 7449. Experimental Mechanics, 51(6), 981–993. https://doi.org/10.1007/s11340-010-9389-4
  • [57] Li, P., Maijer, D. M., Lindley, T. C., & Lee, P. D. (2007). Simulating the residual stress in an A356 automotive wheel and its impact on fatigue life. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 38(4), 505–515. https://doi.org/10.1007/s11663-007-9050-5
  • [58] Godlewski, L. A., Su, X., Pollock, T. M., & Allison, J. E. (2013). The effect of aging on the relaxation of residual stress in cast aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 44(10), 4809–4818. https://doi.org/10.1007/s11661-013-1800-1
  • [59] Zhang, Z., Li, L., Yang, Y., He, N., & Zhao, W. (2014). Machining distortion minimization for the manufacturing of aeronautical structure. International Journal of Advanced Manufacturing Technology, 73(9–12), 1765–1773. https://doi.org/10.1007/s00170-014-5994-1
  • [60] Masoudi, S., Amini, S., Saeidi, E., & Eslami-Chalander, H. (2015). Effect of machining-induced residual stress on the distortion of thin-walled parts. International Journal of Advanced Manufacturing Technology, 76(1–4), 597–608. https://doi.org/10.1007/s00170-014-6281-x
  • [61] Mantle, A. L., & Aspinwall, D. K. (2001). Surface integrity of a high speed milled gamma titanium aluminide. Journal of Materials Processing Technology. Volume 118, Issues 1–3, 3 December 2001, Pages 143-150. https://doi.org/10.1016/S0924-0136(01)00914-1
  • [62] Liu, C. R., & Guo, Y. B. (2000). Finite element analysis of the effect of sequential cuts and toolchip friction on residual stresses in a machined layer. In International Journal of Mechanical Sciences (Vol. 42).
  • [63] Prime, M. B. (2018) The Two-Way Relationship Between Residual Stress and Fatigue Fracture. Fracture, Fatigue, Failure and Damage Evolution, Volume 7, Springer International Publishing
  • [64] M, P., Prasad, A. K., & Paswan, M. K. (2020). Durability improvement of axle housings by compressive residual stress inducement. Applied Materials Today, 19. https://doi.org/10.1016/j.apmt.2020.100584
  • [65] Kutsal, U., Arslan, Y., Ozaydin, O., Akyildiz, Y., Yigit Kaya, A., & Ertugrul, O. (2024). Heat Treatment Simulation of Aluminum Alloy Wheels and Investigation of Process Steps. International Journal of Metalcasting, 18(2), 1556–1572. https://doi.org/10.1007/s40962-023-01132-4
  • [66] Lin, J., Ma, N., Liu, X., & Lei, Y. (2020). Modification of residual stress distribution in welded joint of titanium alloy with multi electron beam heating. Journal of Materials Processing Technology, 278. https://doi.org/10.1016/j.jmatprotec.2019.116504
  • [67] Yang, X., Zhu, J., Nong, Z., Lai, Z., & He, D. (2013). FEM simulation of quenching process in A357 aluminum alloy cylindrical bars and reduction of quench residual stress through cold stretching process. Computational Materials Science, 69, 396–413. https://doi.org/10.1016/j.commatsci.2012.11.024
  • [68] Kattoura, M., Telang, A., Mannava, S. R., Qian, D., & Vasudevan, V. K. (2018). Effect of Ultrasonic Nanocrystal Surface Modification on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy. Materials Science and Engineering: A, 711, 364–377. https://doi.org/10.1016/j.msea.2017.11.043
  • [69] Wyatt, J. E., Berry, J. T., & Williams, A. R. (2007). Residual stresses in aluminum castings. Journal of Materials Processing Technology, 191(1–3), 170–173. https://doi.org/10.1016/j.jmatprotec.2007.03.018
  • [70] Roveda, I., Serrano-Munoz, I., Haubrich, J., Requena, G., & Madia, M. (2023). Influence of post-process heat treatments on the fatigue crack propagation behaviour of a PBF-LB/M AlSi10Mg alloy. International Journal of Fatigue, 175. https://doi.org/10.1016/j.ijfatigue.2023.107808
  • [71] Robinson, J. S., & Tanner, D. A. (2003). Residual stress development and relief in high strength aluminium alloys using standard and retrogression thermal treatments. Materials Science and Technology, 19(4), 512–518. https://doi.org/10.1179/026708303225001939
  • [72] Mohamed, Serageldin & Samuel, A. & Doty, H. & Valtierra, Salvador & Samuel, Fawzy. (2020). Generation and Relaxation of Residual Stresses in Automotive Cylinder Blocks. Automotive System Engineering-New Methods and Optimal Solutions 10.5772/intechopen.93664.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Teorisi ve Dinamiği
Bölüm Derleme
Yazarlar

Onur Özaydin 0000-0001-6395-7553

Aytac Goren 0000-0002-7954-1816

Esra Dokumacı 0000-0003-3886-3963

Gökçe Mehmet Gençer 0000-0003-1084-7240

Gönderilme Tarihi 13 Mayıs 2025
Kabul Tarihi 10 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 4

Kaynak Göster

IEEE O. Özaydin, A. Goren, E. Dokumacı, ve G. M. Gençer, “İnceleme: Döküm Alüminyum Alaşımlarında Kalıntı Gerilme Ölçüm Yöntemleri, Nedenleri ve Önleme Çalışmaları”, DÜMF MD, c. 16, sy. 4, ss. 983–999, 2025, doi: 10.24012/dumf.1697102.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456