Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrikli Ağır Hizmet Araçlarında Sodyum-iyon Batarya Paketi Tasarımı: Çöp Kamyonu Özelinde Paket Tasarımı

Yıl 2025, Cilt: 16 Sayı: 4, 889 - 900, 30.12.2025
https://doi.org/10.24012/dumf.1719248

Öz

Fosil yakıt kullanan içten yanmalı motora sahip araçlar karbon emisyonu artışında ve iklim değişikliğinde etkili olmaktadır. Bu sebeple Dünya genelinde içten yanmalı motora sahip araçlar için çeşitli kısıtlamalar getirilmektedir. Elektrikli araçlarda ise karbon emisyonu yoktur. Bu nedenle ulaşımda karbon emisyonunu azaltmak ve hava kalitesini iyileştirmek için elektrikli araçlara geçiş zarurettir. Ayrıca elektrikli araçlar çok daha sessizdir ve şehirlerdeki gürültü kirliliğinin azaltılmasında büyük rol oynamaktadır. Ağır vasatalar yüksek karbon emisyonuna sahiptir. Çöp kamyonları özelinde bu durum daha da vahimdir. Çöp kamyonları aracın kullanıldığı şehre göre değişmekle beraber, yaklaşık 5 km/h ila 20 km/h arasında ortalama hıza sahiptir. Bu da içten yanmalı motor veriminin %7 ile %15 arasında olduğu bölgede çalışması demektir. Ancak elektrik motorlarında verim en kötü senaryoda bile %60 ların altına düşmemektedir. Elektrikli araçlar durduğu esnada çok düşük enerji tüketmektedir. Böylelikle sık dur kalk yapan, rölantide çalışma süresi uzun ve düşük hızlarda kullanılan çöp kamyonu gibi özel sürüş çevrime sahip araçların elektrifikasyonu ile enerji verimliliği ciddi oranda artış sağlamaktadır.
Bu çalışmada elektrikli bir çöp kamyonu için, batarya paketi tasarımı yapılmaktadır. Tasarlanan bataryanın fiziksel boyutu ve enerji kapasitesi sektörde yer alan lityum-iyon bataryalı araçların teknik verileri dikkate alınarak oluşturulmuştur. Otomotivde geleneksel olarak kullanılan lityum-iyon batarya kimyası yerine sodyum-iyon batarya kimyası tercih edilmiştir. Sodyum-iyon son dönemde üzerinde çok fazla çalışma yapılan ve özellikle maliyet, sürdürülebilirlik, güvenlik, bulunabilirlik, çevreye duyarlılık açısından büyük artıları olan bir kimyadır. Çalışma kapsamında bir kamyon bataryası tasarlanmakta ve enerji, güç, maksimum akım, batarya gerilimi, hücre seçimi, modül topolojisi, kayıp güçler, iletken kesitleri gibi hesaplamalar sodyum kimyasına göre gerçekleştirilmektedir.
Yapılan hesaplamalar ağırlık, hacim, enerji ve güç yoğunluğu gibi parametreler açısından sodyum-iyon bataryanın kamyonlara entegrasyonunun mümkün olduğunu göstermektedir.

Kaynakça

  • [1]IEA, Global EV Outlook 2020. Entering the decade of electric drive? International Energy Agency, 2020.
  • [2] “Factbox: German cities ban older diesel cars,” Reuters, [Online]. Date of Access: Dec. 8, 2024. from https://www.reuters.com
  • [3] “City of Amsterdam to ban polluting cars from 2030,” Reuters, [Online]. Date of Access: Dec. 8, 2024. from https://www.reuters.com
  • [4] F. Harvey, “Four of world's biggest cities to ban diesel cars from their centres,” The Guardian, [Online]. Date of Access: Dec. 8, 2024. from https://www.theguardian.com
  • [5] “Brussel gaat dieselwagens verbannen vanaf 2030, regering wil ook maatregelen tegen benzinewagens,” Het Nieuwsblad, [Online]. Date of Access: Dec. 8, 2024. from https://www.nieuwsblad.be
  • [6] “Vanaf vandaag (strengere) lage-emissiezones in Gent, Antwerpen en Brussel: met welke wagen mag je waar nog binnen?,” VRT NWS, [Online]. Date of Access: Dec. 8, 2024. from https://www.vrt.be
  • [7] L. Sommer, “California Governor Signs Order Banning Sales Of New Gasoline Cars By 2035,” NPR, 2020. [Online]. Date of Access: Dec. 8, 2024 from https://www.npr.org
  • [8] Governor of California, Executive Order N-79-20, [Online]. Date of Access: Sep. 23, 2020. from https://www.gov.ca.gov
  • [9] The City of New York Office of The Mayor, Executive Order No. 53, 2020. [Online]. Date of Access: Dec. 8, 2024. https://www.nyc.gov
  • [10] M. Seijdel, “Oude dieselauto’s en vervuilende brommers komen centrum Den Haag straks niet meer in,” AD.nl, [Online]. Date of Access: Dec. 8, 2024. from https://www.ad.nl
  • [11] L. J. Hounjet, “Comparing lithium‐and sodium‐ion batteries for their applicability within energy storage systems,” Energy Storage, vol. 4, no. 3, e309, 2022.
  • [12] A. Nekahi et al., “Comparative issues of metal-ion batteries toward sustainable energy storage: Lithium vs. sodium,” Batteries, vol. 10, no. 8, p. 279, 2024.
  • [13] H. Bai and Z. Song, “Lithium-ion battery, sodium-ion battery, or redox-flow battery: A comprehensive comparison in renewable energy systems,” J. Power Sources, vol. 580, p. 233426, 2023.
  • [14] Y. Soydan, “Electrical and conventional automobile tribology: New trends and applications”, DÜMF MD, vol. 7, no. 3, p. 527–536, 2016.
  • [15] “Sodium-Ion vs. Lithium-Ion Batteries - A Clear Winner?,” Solar4RVs, [Online]. Date of Access: Dec. 8, 2024. from https://www.solar4rvs.com.au
  • [16] S. Lilley, “Sodium-ion Batteries: Inexpensive and Sustainable Energy Storage,” Faraday Insights, no. 11, 2021.
  • [17] J. H. Choi et al., “Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages,” Energy Storage Mater., vol. 68, p. 103368, 2024.
  • [18] “CATL, BYD's sodium-ion batteries both to be in mass production within this year, report says,” CNEV Post, [Online]. Date of Access: Apr. 20, 2023. from https://cnevpost.com
  • [19] J. F. Peters, A. Peña Cruz, and M. Weil, “Exploring the economic potential of sodium-ion batteries,” Batteries, vol. 5, no. 1, p. 10, 2019.
  • [20] K. M. Abraham, “How comparable are sodium-ion batteries to lithium-ion counterparts?,” ACS Energy Lett., vol. 5, no. 11, p. 3544–3547, 2020.
  • [21] G. Taş, “Temperature Prediction of Lithium-ion Battery by CPSO-UKF”, DÜMF MD, vol. 15, no. 4, p. 817–825, 2024, doi: 10.24012/dumf.1528158.
  • [22] Ö. F. Özcan, T. Karadağ, M. Altuğ, ve Ö. Özgüven, “A Review Study on the Characteristics and Advantages of Battery Chemicals Used in Electric Vehicles,” Gazi Univ. J. Sci. Part A: Eng. Innov., vol. 8, no. 2, p. 276–298, 2021.
  • [23] C. Crownhart, “How sodium could change the game for batteries,” MIT Technology Review, [Online]. Date of Access: May 11, 2023. from https://www.technologyreview.com
  • [24] M. Schirber, “Sodium as a green substitute for lithium-ion batteries,” Physics, vol. 17, p. 73, 2024.
  • [25] R. Menak, T. Karadağ, M. Altuğ, ve N. Tan, “A Review Study on Battery Management Systems in Electric Vehicles,” Gazi Univ. J. Sci. Part A: Eng. Innov., vol. 8, no. 2, p. 234–275, 2021.
  • [26] A. Rudola, R. Sayers, C. J. Wright, et al., “Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries,” Nat. Energy, vol. 8, p. 215–218, 2023. doi: 10.1038/s41560-023-01215-w.
  • [27] Z. N. Kurtulmuş ve A. Karakaya, “Review of lithium-ion, fuel cell, sodium-beta, nickel-based and metal-air battery technologies used in electric vehicles,” Int. J. Energy Appl. Technol., vol. 10, no. 2, p. 103–113, 2023. doi: 10.31593/ijeat.1307361.
  • [28] A. M. Glushenkov, “Recent commentaries on the expected performance, advantages and applications of sodium-ion batteries,” Energy Mater., vol. 3, p. 300010, 2023. doi: 10.20517/energymater.2022.70.
  • [29] M. G. M. Abdolrasol, S. Ansari, I. A. Sarker, S. K. Tiong, ve M. A. Hannan, “Lithium-ion to sodium-ion batteries transitioning: trends, analysis and innovative technologies prospects in EV application,” Prog. Energy, vol. 7, no. 2, p. 022007, 2025. doi: 10.1088/2516-1083/adbff0.
  • [30] F. Degen, M. Mitterfellner, and A. Kampker, “Comparative life cycle assessment of lithium‐ion, sodium‐ion, and solid‐state battery cells for electric vehicles,” J. Ind. Ecol., vol. 29, no. 1, p. 113–128, 2025.
  • [31] A. R. Nurohmah et al., “Sodium-ion battery from sea salt: a review,” Mater. Renew. Sustain. Energy, vol. 11, no. 1, p. 71, 2022.
  • [32] B. Fındık and K. Erhan, “Comparative Analysis of Energy Consumption Between an Electrified and A Conventional Garbage Truck According to Urban Driving Cycle,” in Proc. 5th Int. Congr. Eng. Sci., Istanbul, Turkey, Oct. 12–13, 2024.
  • [33] “Electric Trucks 2025: The Big Comparison of Models, Ranges & Applications,” IODynamics, [Online]. Date of Access: Dec. 8, 2024. from https://www.iodynamics.de
  • [34] G. Gartler, “Over 1000 V in the future? Integration of HV battery and drivetrain in the electric car,” Inside Automotive, 2023. [Online]. Date of Access: Dec. 8, 2024. from https://www.magna.com
  • [35] P. Dini, A. Colicelli, and S. Saponara, “Review on modeling and SOC/SOH estimation of batteries for automotive applications,” Batteries, vol. 10, no. 1, p. 34, 2024.

Design of Sodium-Ion Battery Packs in Electric Heavy-Duty Vehicles: A Case Study for Garbage Truck

Yıl 2025, Cilt: 16 Sayı: 4, 889 - 900, 30.12.2025
https://doi.org/10.24012/dumf.1719248

Öz

Electric vehicles do not generate carbon emissions in the same manner as internal combustion engine vehicles. Therefore, transitioning to electric vehicles has become essential to reduce carbon emissions in the transportation sector and to improve air quality. Additionally, EVs are contributing significantly to the reduction of noise pollution in urban environments.
Heavy-duty vehicles are major contributors to high carbon emissions, and the situation is even more concerning in the case of garbage trucks. These vehicles typically operate at average speeds ranging from approximately 5 km/h to 20 km/h. Such low-speed operation results in internal combustion engines functioning within an efficiency range of only 7% to 15%. In contrast, electric motors maintain efficiencies above 60%, even under unfavorable conditions. Furthermore, electric vehicles consume minimal energy while idling. Therefore, the electrification of vehicles with unique driving cycles—such as garbage trucks, which are characterized by frequent stop-and-go patterns, prolonged idling, and low-speed operation—offers substantial improvements in energy efficiency.
In this study, a battery pack is designed for an electric garbage truck. Instead of the lithium-ion battery chemistry traditionally used in the automotive industry, sodium-ion battery chemistry is selected. Sodium-ion batteries have recently garnered significant research interest due to their notable advantages in terms of cost, sustainability, safety, resource availability, and environmental impact.
As part of this study, a truck battery is designed, and key parameters such as energy, power, maximum current, battery voltage, cell selection, module topology, power losses, and conductor cross-sections are calculated based on sodium-ion chemistry. The results of these calculations demonstrate that the integration of sodium-ion batteries into heavy-duty trucks is feasible with respect to parameters such as weight, volume, energy density, and power density.

Kaynakça

  • [1]IEA, Global EV Outlook 2020. Entering the decade of electric drive? International Energy Agency, 2020.
  • [2] “Factbox: German cities ban older diesel cars,” Reuters, [Online]. Date of Access: Dec. 8, 2024. from https://www.reuters.com
  • [3] “City of Amsterdam to ban polluting cars from 2030,” Reuters, [Online]. Date of Access: Dec. 8, 2024. from https://www.reuters.com
  • [4] F. Harvey, “Four of world's biggest cities to ban diesel cars from their centres,” The Guardian, [Online]. Date of Access: Dec. 8, 2024. from https://www.theguardian.com
  • [5] “Brussel gaat dieselwagens verbannen vanaf 2030, regering wil ook maatregelen tegen benzinewagens,” Het Nieuwsblad, [Online]. Date of Access: Dec. 8, 2024. from https://www.nieuwsblad.be
  • [6] “Vanaf vandaag (strengere) lage-emissiezones in Gent, Antwerpen en Brussel: met welke wagen mag je waar nog binnen?,” VRT NWS, [Online]. Date of Access: Dec. 8, 2024. from https://www.vrt.be
  • [7] L. Sommer, “California Governor Signs Order Banning Sales Of New Gasoline Cars By 2035,” NPR, 2020. [Online]. Date of Access: Dec. 8, 2024 from https://www.npr.org
  • [8] Governor of California, Executive Order N-79-20, [Online]. Date of Access: Sep. 23, 2020. from https://www.gov.ca.gov
  • [9] The City of New York Office of The Mayor, Executive Order No. 53, 2020. [Online]. Date of Access: Dec. 8, 2024. https://www.nyc.gov
  • [10] M. Seijdel, “Oude dieselauto’s en vervuilende brommers komen centrum Den Haag straks niet meer in,” AD.nl, [Online]. Date of Access: Dec. 8, 2024. from https://www.ad.nl
  • [11] L. J. Hounjet, “Comparing lithium‐and sodium‐ion batteries for their applicability within energy storage systems,” Energy Storage, vol. 4, no. 3, e309, 2022.
  • [12] A. Nekahi et al., “Comparative issues of metal-ion batteries toward sustainable energy storage: Lithium vs. sodium,” Batteries, vol. 10, no. 8, p. 279, 2024.
  • [13] H. Bai and Z. Song, “Lithium-ion battery, sodium-ion battery, or redox-flow battery: A comprehensive comparison in renewable energy systems,” J. Power Sources, vol. 580, p. 233426, 2023.
  • [14] Y. Soydan, “Electrical and conventional automobile tribology: New trends and applications”, DÜMF MD, vol. 7, no. 3, p. 527–536, 2016.
  • [15] “Sodium-Ion vs. Lithium-Ion Batteries - A Clear Winner?,” Solar4RVs, [Online]. Date of Access: Dec. 8, 2024. from https://www.solar4rvs.com.au
  • [16] S. Lilley, “Sodium-ion Batteries: Inexpensive and Sustainable Energy Storage,” Faraday Insights, no. 11, 2021.
  • [17] J. H. Choi et al., “Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages,” Energy Storage Mater., vol. 68, p. 103368, 2024.
  • [18] “CATL, BYD's sodium-ion batteries both to be in mass production within this year, report says,” CNEV Post, [Online]. Date of Access: Apr. 20, 2023. from https://cnevpost.com
  • [19] J. F. Peters, A. Peña Cruz, and M. Weil, “Exploring the economic potential of sodium-ion batteries,” Batteries, vol. 5, no. 1, p. 10, 2019.
  • [20] K. M. Abraham, “How comparable are sodium-ion batteries to lithium-ion counterparts?,” ACS Energy Lett., vol. 5, no. 11, p. 3544–3547, 2020.
  • [21] G. Taş, “Temperature Prediction of Lithium-ion Battery by CPSO-UKF”, DÜMF MD, vol. 15, no. 4, p. 817–825, 2024, doi: 10.24012/dumf.1528158.
  • [22] Ö. F. Özcan, T. Karadağ, M. Altuğ, ve Ö. Özgüven, “A Review Study on the Characteristics and Advantages of Battery Chemicals Used in Electric Vehicles,” Gazi Univ. J. Sci. Part A: Eng. Innov., vol. 8, no. 2, p. 276–298, 2021.
  • [23] C. Crownhart, “How sodium could change the game for batteries,” MIT Technology Review, [Online]. Date of Access: May 11, 2023. from https://www.technologyreview.com
  • [24] M. Schirber, “Sodium as a green substitute for lithium-ion batteries,” Physics, vol. 17, p. 73, 2024.
  • [25] R. Menak, T. Karadağ, M. Altuğ, ve N. Tan, “A Review Study on Battery Management Systems in Electric Vehicles,” Gazi Univ. J. Sci. Part A: Eng. Innov., vol. 8, no. 2, p. 234–275, 2021.
  • [26] A. Rudola, R. Sayers, C. J. Wright, et al., “Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries,” Nat. Energy, vol. 8, p. 215–218, 2023. doi: 10.1038/s41560-023-01215-w.
  • [27] Z. N. Kurtulmuş ve A. Karakaya, “Review of lithium-ion, fuel cell, sodium-beta, nickel-based and metal-air battery technologies used in electric vehicles,” Int. J. Energy Appl. Technol., vol. 10, no. 2, p. 103–113, 2023. doi: 10.31593/ijeat.1307361.
  • [28] A. M. Glushenkov, “Recent commentaries on the expected performance, advantages and applications of sodium-ion batteries,” Energy Mater., vol. 3, p. 300010, 2023. doi: 10.20517/energymater.2022.70.
  • [29] M. G. M. Abdolrasol, S. Ansari, I. A. Sarker, S. K. Tiong, ve M. A. Hannan, “Lithium-ion to sodium-ion batteries transitioning: trends, analysis and innovative technologies prospects in EV application,” Prog. Energy, vol. 7, no. 2, p. 022007, 2025. doi: 10.1088/2516-1083/adbff0.
  • [30] F. Degen, M. Mitterfellner, and A. Kampker, “Comparative life cycle assessment of lithium‐ion, sodium‐ion, and solid‐state battery cells for electric vehicles,” J. Ind. Ecol., vol. 29, no. 1, p. 113–128, 2025.
  • [31] A. R. Nurohmah et al., “Sodium-ion battery from sea salt: a review,” Mater. Renew. Sustain. Energy, vol. 11, no. 1, p. 71, 2022.
  • [32] B. Fındık and K. Erhan, “Comparative Analysis of Energy Consumption Between an Electrified and A Conventional Garbage Truck According to Urban Driving Cycle,” in Proc. 5th Int. Congr. Eng. Sci., Istanbul, Turkey, Oct. 12–13, 2024.
  • [33] “Electric Trucks 2025: The Big Comparison of Models, Ranges & Applications,” IODynamics, [Online]. Date of Access: Dec. 8, 2024. from https://www.iodynamics.de
  • [34] G. Gartler, “Over 1000 V in the future? Integration of HV battery and drivetrain in the electric car,” Inside Automotive, 2023. [Online]. Date of Access: Dec. 8, 2024. from https://www.magna.com
  • [35] P. Dini, A. Colicelli, and S. Saponara, “Review on modeling and SOC/SOH estimation of batteries for automotive applications,” Batteries, vol. 10, no. 1, p. 34, 2024.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Depolama
Bölüm Araştırma Makalesi
Yazarlar

Burak Fındık Bu kişi benim 0000-0001-9804-3540

Koray Erhan 0000-0003-0505-9389

Gönderilme Tarihi 20 Haziran 2025
Kabul Tarihi 30 Ekim 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 4

Kaynak Göster

IEEE B. Fındık ve K. Erhan, “Design of Sodium-Ion Battery Packs in Electric Heavy-Duty Vehicles: A Case Study for Garbage Truck”, DÜMF MD, c. 16, sy. 4, ss. 889–900, 2025, doi: 10.24012/dumf.1719248.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456