Araştırma Makalesi
BibTex RIS Kaynak Göster

Taguchi Yaklaşımı ile Acidithiobacillus Ferrooxidans Kullanılarak Oksitlenmiş Çinko Cevherinin Biyoliçi

Yıl 2025, Cilt: 16 Sayı: 4, 1067 - 1075, 30.12.2025
https://doi.org/10.24012/dumf.1748240

Öz

Çinko, galvanizleme, boya, kozmetik, pil ve gübre gibi çeşitli endüstrilerde yaygın olarak kullanılan aktif ve elektropozitif bir metaldir. Başlıca çinko içeren mineral olan sfalerit (ZnS), sülfürlü cevherlerin işlenmesi sırasında oluşan kükürt emisyonlarına bağlı çevresel kaygılar nedeniyle, alternatif çinko kaynaklarına olan ilgi son yıllarda artmıştır. Smithsonit, willemit ve hemimorfit gibi ikincil çinko mineralleri bu bağlamda dikkat çekmektedir. Yaklaşık %52 Zn içeriğine sahip smithsonit, genellikle flotasyon ve liç yöntemleriyle işlenmektedir. Ancak, bu geleneksel yöntemler çevresel risk oluşturan tehlikeli atıklar üretmektedir. Bu nedenle, sürdürülebilir bir alternatif olarak biyoliç, çevre dostu bir yaklaşım olarak öne çıkmaktadır.

Bu çalışmada, Türkiye'nin Adana-Kozan ilçesine bağlı Horzum bölgesinden temin edilen smithsonit cevheri örneğinin Acidithiobacillus ferrooxidans bakterisi kullanılarak biyoliçi araştırılmıştır. Deneyler, katı oranı (%10, %15 ve %20) ile liç süresinin (6, 12 ve 18 gün) çinko kazanımı üzerindeki etkilerini değerlendirmek amacıyla Taguchi L9 ortogonal dizaynına göre planlanmıştır. Testler, 100 mL’lik biyoreaktörlerde; 75 µm tane boyutu, 25–30 °C sıcaklık ve 180 rpm karıştırma hızı gibi kontrollü koşullarda gerçekleştirilmiştir. Liç süresince pH, redoks potansiyeli (mV) ve bakteri hücre yoğunluğu 6 günlük aralıklarla izlenmiştir. Elde edilen bulgular, karbonatlı çinko cevherlerinin çevresel etkileri en aza indirecek şekilde işlenmesine yönelik sürdürülebilir yöntemlerin geliştirilmesine katkı sağlamaktadır.

Kaynakça

  • [1] Liu, C., Zhang, W., Song, S., Li, H., Liu, Y. Flotation separation of smithsonite from calcite using 2-phosphonobutane-1,2, 4-tricarboxylic acid as a depressant. Powder Technol. 352, 11–15, 2019a.
  • [2] Ghosh, M.K., Das, R.P., Biswas, A.K. Oxidative ammonia leaching of sphalerit. Part I. Noncatalytic kinetics. Int. J. Miner. Process., 66, 241–254, 2002.
  • [3] Shirin, E., Fereshteh, R., Sadrnezhaad, S.K., Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy 82, 54–62, 2006.
  • [4] Albrecht, T.W.J., Addai-Mensah, J., Fornasiero, D. Critical copper concentration in sphalerite flotation: Effect of temperature and collector. Int. J. Miner. Process. 146, 15–22, 2016.
  • [5] Bai, S.J., Li, C.L., Fu, X.Y., Ding, Z., Wen, S.M. Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance. Miner. Eng., 125, 190–199, 2018a.
  • [6] Bai, S.J., Li, C.L., Fu, X.Y., Liu, J., Wen, S.M., Characterization of zinc sulfide species on smithsonite surfaces duringsulfidation processing: Effect of ammonia liquor. J. Ind. Eng. Chem., 61, 19–27, 2018b.
  • [7] Irannajad, M., Ejtemaei, M., Gharabaghi, M. The effect of reagents on selective flotation of smithsonite–calcite–quartz. Miner. Eng. 22, 766–771, 2009.
  • [8] Liu, C., Feng, Q., Zhang, G., Ma, W., Meng, Q., Chen, Y. Effects of lead ions on the flotation of hemimorphite using sodium oleate. Miner. Eng. 89, 163–167, 2016a.
  • [9] Liu, C., Feng, Q., Zhang, G., Chen, W., Chen, Y., Effect of depressants in the selective flotation of scheelite and calcite using oxidized paraffin soap as collector. Int.J. Miner. Process. 157, 210–215, 2016b.
  • [10] Chen A., Zhao W. Z., Ji X., Long S., Huo G., Chen X. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy 97, 228-232, 2009. https://doi.org/ 10.1016/j.hydromet.2009.01.005.
  • [11] Shi, Q., Feng, Q., Zhang, G., Deng, H. Electrokinetic properties of smithsonite and its floatability with anionic collector. Colloids Surf. A Physicochem. Eng. Aspects 410 (410), 178–183, 2012.
  • [12] Zhao, Z. Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution. Hydrometallurgy 99 (3), 255–258, 2009.
  • [13] Zhao, Y. and R. Stanforth. ‘‘Production of Zn Powder by Alkaline Treatment of Smithsonite Zn–Pb Ores,’’ Hydrometallurgy, 56, 237, 2000.
  • [14] Hurşit M., Laçin O., Saraç H. Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent. Journal of the Taiwan Institute of Chemical Engineers, Volume 40, Issue 1,Pages 6-12, 2009. ISSN 1876-1070, https://doi.org/10.1016/j.jtice.2008.07.003.
  • [15] Liu, C., Zhu, G., Song, S., Li, H. Flotation separation of smithsonite from quartz using calcium lignosulphonate as a depressant and sodium oleate as a collector. Miner. Eng., 131, 385–391, 2019b.
  • [16] Wang L., Hu G.Y., Sun W., Khoso S.A., Liu R.Q., Zhang X.F. Selective flotation of smithsonite from dolomite by using novel mixed collector system, Trans. Nonferrous Met. Soc. China 29, 1082–1089, 2019.
  • [17] Araújo, A.C.A., Lima, R.M.F. Influence of cations Ca2+, Mg2+ and Zn2+ on the f lotation and surface charge of smithsonite and dolomite with sodium oleate and sodium silicate. Int. J. Miner. Process. 167, 35–41, 2017.
  • [18] Kashani, A.H.N., Rashchi, F. Separation of oxidized zinc minerals from tailings: influence of flotation reagents. Miner. Eng. 21, 967–972, 2008.
  • [19] DPT. Metal Madenler (Kurun, Çinko, Kadmiyum). 8. Be Yıllık Kalkınma Planı, Madencilik Özel ihtisas Komisyonu Metal Madenler Alt Komisyonu Kurun-Çinko-Kadmiyum Çalıma Grubu Raporu, DPT: 2628- ÖDK 639, Ankara, 2001.
  • [20] Ciccu, R., Curreli, L., Ghiani, M. The beneficiation of lean semi oxidized lead–zinc ores. In: Proc. 13th Int. Minerals Process. Cong., Processing of Oxidized and Mixed Oxide–Sulfide Lead–Zinc Ores, Warsaw, pp. 125–145, 1979.
  • [21] Pereira, C.A., Peres, A.E.C. Reagents in calamine zinc ores flotation. Miner. Eng. 18, 275–277, 2005.
  • [22] Liu W.P., Wang Z.X., Wang X.M., Miller J.D. Smithsonite flotation with lauryl phosphate. Miner. Eng. 147, 106155, 2020.
  • [23] Wu D. D., Ma W.H., Wen S.M., Deng J.S., Bai S.J., Enhancing the sulfidation of smithsonite by superficial dissolution with a novel complexing agent, Miner. Eng. 114, 1–7, 2017.
  • [24] Top S. Dıssolvıng Zınc From Smıthsonıte Mıneral By Dırect Leachıng Method. IV. Internatıonal Istanbul Scıentıfıc Research Congress Aprıl 2-4, 2021.
  • [25] Abdel-Aal, E. A. ‘‘Kinetics of Sulfuric Acid Leaching of Low-grade Zinc Silicate Ore,’’ Hydrometallurgy, 55, 247, 2000.
  • [26] Souza A.D., Peina P.S., Lima E.V.O., Dasilva C.A., Leao V.A. Kinetics of sulphuric acid leaching of a zinc silicate calcine. Hydrometallurgy 89, 337-345, 2007. https://doi.org/10.1016/j.hydromet.2007.08.005.
  • [27] Irannajaad, M., Meshkini, M., Azadmehr, A. R. Leaching of zinc from low grade oxide ore using organic acid. Physicochemical Problems of Mineral Processing, 49(2), 547-555, 2013. https://doi.org/10.5277/ppmp130215
  • [28] İlyas, S., Chi, R., Bhatti, H.N. Column bioleaching of low-grade mining ore containing high level of smithsonite, talc, sphaerocobaltite and azurite. Bioprocess Biosyst Eng 35, 433–440, 2012. https://doi.org/10.1007/s00449-011-0582-3.
  • [29] Abdollahi H., Mirmohammadi M., Ghassa S., Jozanikohan G., Boroumand Z., Tuovinen O. H., Acid bioleaching of select sphalerite samples of variable Zn- and Fe-contents. Hydrometallurgy, Volume 212, 105897, ISSN 0304-386X, 2022. https://doi.org/10.1016/j.hydromet.2022.105897.
  • [30] Bulaev, A., & Melamud, V. Two-Stage Oxidative Leaching of Low-Grade Copper–Zinc Sulfide Concentrate. Microorganisms, 10(9), 1781, 2022. https://doi.org/10.3390/microorganisms1009178
  • [31] Barkusaraey B., Mafigholami F., Faezi Ghasemi R., M., Khayati, G. Zn bio extraction from a zinc rich paint sludge by indigenous Pseudomonas aeruginosa. Chemical Engineering Communications, 209(10), 1397–1412, 2021. https://doi.org/10.1080/00986445.2021.1974410
  • [32] Moinier, D.; Byrne, D.; Amouric, A.; Bonnefoy, V. The Global Redox Responding RegB/RegA Signal Transduction System Regulates the Genes Involved in Ferrous Iron and Inorganic Sulfur Compound Oxidation of the Acidophilic Acidithiobacillus ferrooxidans. Front. Microbiol. 8, 16, 2017.
  • [33] Basavarajappa S, Chandramohan G,Paulo Davim J.”Application of taguchi techniques to study dry sliding wear behaviour of metal matrix composites.Mater Des;28(4): 1393-8, 2007.
  • [34] Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R.N., Sukla, L.B. Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains, Hydrometallurgy, 85, 1–8, 2006.
  • [35] Kır H., Apay S.Optimization of coating parameters in hard chrome coated structural steel by electrolytic method with taguchi method GUSTIJ, 10 (1), pp. 7-14, 2020.
  • [36] Korkmaz, A.A. Optimization of Smokeless Fuel Production from Lignite by Taguchi Orthogonal Design. Solid Fuel Chem. 55, 444–449, 2021. https://doi.org/10.3103/S0361521921060082.
  • [37] Başar C., A., Korkmaz A., A., Önal Y., Utku T., Evaluation of optimum carbonization conditions of the blended domestic polymeric waste, biomass and lignite in the presence of catalyst by Taguchi and ANOVA optimization analysis, Journal of Hazardous Materials Advances, Volume 8, 100164, 2022, ISSN 2772-4166, https://doi.org/10.1016/j.hazadv.2022.100164.
  • [38] Li, W., Feng, Q., & Li, Z. Isolation and Characterization of a Novel Iron–Sulfur Oxidizing Bacterium Acidithiobacillus Ferrooxidans YQ-N3 and its Applicability in Coal Biodesulfurization. Minerals, 2023. https://doi.org/10.3390/min13010095.
  • [39] Feng, Y., Wang, H., Li, H., Chen, X., Du, Z., & Kang, J. Effect of iron transformation on Acidithiobacillus ferrooxidans bio-leaching of clay vanadium residue. Journal of Central South University, 26, 796-805, 2019. https://doi.org/10.1007/s11771-019-4049-z.
  • [40] Chen, H., Zhang, D., Nie, Z., Xia, J., Li, Q., Zhang, R., Yin, H., & Pakostova, E. Reductive dissolution of jarosite by inorganic sulfur compounds catalyzed by Acidithiobacillus thiooxidans. Hydrometallurgy. 2022. https://doi.org/10.1016/j.hydromet.2022.105908.
  • [41] Çiftçi, H., & Atik, S. Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 30(4), 275-284, 2014.
  • [42] Astudillo, C., Acevedo, F. Adaptation of Sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate. Hydrometallurgy 92, 11e15, 2008.
  • [43] Nemati, M., Harrison, S.T.L. Effect of solid loading on thermophilic bioleaching of sulfide minerals. J. Chem. Technol. Biotechnol75, 526e532, 2000.
  • [44] Roy R.K. Design of Experiments Using the Taguchi Approach. G. Taguchi, System of experimental design, quality resources. 1987.
  • [45] Li, X., Azimzadeh, B., Martínez, C., & McBride, M. Pb Mineral Precipitation in Solutions of Sulfate, Carbonate and Phosphate: Measured and Modeled Pb Solubility and Pb2+ Activity. Minerals. 2021. https://doi.org/10.3390/min11060620.
  • [46] Unal R., and Dean E. B. “Taguchi approach to design optimization for quality and cost: an overview,” International Society of Parametric Analysts, pp. 1 -10, 1990.
  • [47] Kashani, A.H.N., Rashchi, F. Separation of oxidized zinc minerals from tailings: influence of flotation reagents. Miner. Eng. 21, 967–972, 2008.
  • [48] Montgomery D. C. Design and analysis of experiments. Global trends and environmental issues in nickel mining Sulfides versus laterites, Ore Geology Reviews, 38, 9–26, 2017.
  • [49] Tiwary V. K., Padmakumar A., and Malik V. R. “Investigations on FSW of nylon micro -particle enhance 3D printed parts applied to a Clark -Y UAV wing,” Welding International, vol. 36, no. 8, pp. 474 -488, 2022.
  • [50] Bayat, O., Sever, E., Bayat, B., Arslan, V., & Poole, C. Bioleaching of Zinc and Iron from Steel Plant Waste using Acidithiobacillus Ferrooxidans. Applied Biochemistry and Biotechnology, 152, 117-126. https://doi.org/10.1007/s12010-008-8257-5, 2009.
  • [51] Heydarian, A., Vakilchap, F., Mousavi, S., & Mousavi, S. Bacterial acidic agents-assisted multi-elemental (Ni, Co, and Li) leaching of used lithium-ion batteries at high pulp densities. Scientific Reports, 15. 2025, https://doi.org/10.1038/s41598-025-00660-9.

Bioleaching of Oxidized Zinc Ore Using Acidithiobacillus Ferrooxidans with Taguchi Approach

Yıl 2025, Cilt: 16 Sayı: 4, 1067 - 1075, 30.12.2025
https://doi.org/10.24012/dumf.1748240

Öz

Zinc is an active and electropositive metal extensively used in various industries, including galvanizing, paint, cosmetics, batteries, and fertilizers. While sphalerite (ZnS) is the primary zinc-bearing mineral, the environmental concerns associated with sulfur emissions during sulfide ore processing have led to increased interest in alternative zinc sources. Secondary zinc minerals such as smithsonite, willemite, and hemimorphite have gained attention in recent years. Among them, smithsonite, containing approximately 52% Zn, is typically processed using flotation and leaching techniques. However, these methods generate hazardous wastes that pose environmental risks. As a sustainable alternative, bioleaching has emerged as an eco-friendly approach. In this study, bioleaching of a smithsonite ore sample obtained from the Horzum region (Adana-Kozan, Türkiye) was investigated using Acidithiobacillus ferrooxidans. Experiments were designed according to the Taguchi L9 orthogonal array to evaluate the effects of solid concentration (10%, 15%, and 20%) and leaching duration (6, 12, and 18 days) on zinc recovery. The tests were conducted in 100 mL bioreactors under controlled conditions: particle size of 75 µm, temperature of 25–30 °C, and agitation speed of 180 rpm. During the leaching process, pH, redox potential (mV), and bacterial cell density were monitored at 6-day intervals. The findings contribute to the development of sustainable methods for processing carbonate zinc ores while minimizing environmental impact.

Kaynakça

  • [1] Liu, C., Zhang, W., Song, S., Li, H., Liu, Y. Flotation separation of smithsonite from calcite using 2-phosphonobutane-1,2, 4-tricarboxylic acid as a depressant. Powder Technol. 352, 11–15, 2019a.
  • [2] Ghosh, M.K., Das, R.P., Biswas, A.K. Oxidative ammonia leaching of sphalerit. Part I. Noncatalytic kinetics. Int. J. Miner. Process., 66, 241–254, 2002.
  • [3] Shirin, E., Fereshteh, R., Sadrnezhaad, S.K., Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy 82, 54–62, 2006.
  • [4] Albrecht, T.W.J., Addai-Mensah, J., Fornasiero, D. Critical copper concentration in sphalerite flotation: Effect of temperature and collector. Int. J. Miner. Process. 146, 15–22, 2016.
  • [5] Bai, S.J., Li, C.L., Fu, X.Y., Ding, Z., Wen, S.M. Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance. Miner. Eng., 125, 190–199, 2018a.
  • [6] Bai, S.J., Li, C.L., Fu, X.Y., Liu, J., Wen, S.M., Characterization of zinc sulfide species on smithsonite surfaces duringsulfidation processing: Effect of ammonia liquor. J. Ind. Eng. Chem., 61, 19–27, 2018b.
  • [7] Irannajad, M., Ejtemaei, M., Gharabaghi, M. The effect of reagents on selective flotation of smithsonite–calcite–quartz. Miner. Eng. 22, 766–771, 2009.
  • [8] Liu, C., Feng, Q., Zhang, G., Ma, W., Meng, Q., Chen, Y. Effects of lead ions on the flotation of hemimorphite using sodium oleate. Miner. Eng. 89, 163–167, 2016a.
  • [9] Liu, C., Feng, Q., Zhang, G., Chen, W., Chen, Y., Effect of depressants in the selective flotation of scheelite and calcite using oxidized paraffin soap as collector. Int.J. Miner. Process. 157, 210–215, 2016b.
  • [10] Chen A., Zhao W. Z., Ji X., Long S., Huo G., Chen X. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy 97, 228-232, 2009. https://doi.org/ 10.1016/j.hydromet.2009.01.005.
  • [11] Shi, Q., Feng, Q., Zhang, G., Deng, H. Electrokinetic properties of smithsonite and its floatability with anionic collector. Colloids Surf. A Physicochem. Eng. Aspects 410 (410), 178–183, 2012.
  • [12] Zhao, Z. Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution. Hydrometallurgy 99 (3), 255–258, 2009.
  • [13] Zhao, Y. and R. Stanforth. ‘‘Production of Zn Powder by Alkaline Treatment of Smithsonite Zn–Pb Ores,’’ Hydrometallurgy, 56, 237, 2000.
  • [14] Hurşit M., Laçin O., Saraç H. Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent. Journal of the Taiwan Institute of Chemical Engineers, Volume 40, Issue 1,Pages 6-12, 2009. ISSN 1876-1070, https://doi.org/10.1016/j.jtice.2008.07.003.
  • [15] Liu, C., Zhu, G., Song, S., Li, H. Flotation separation of smithsonite from quartz using calcium lignosulphonate as a depressant and sodium oleate as a collector. Miner. Eng., 131, 385–391, 2019b.
  • [16] Wang L., Hu G.Y., Sun W., Khoso S.A., Liu R.Q., Zhang X.F. Selective flotation of smithsonite from dolomite by using novel mixed collector system, Trans. Nonferrous Met. Soc. China 29, 1082–1089, 2019.
  • [17] Araújo, A.C.A., Lima, R.M.F. Influence of cations Ca2+, Mg2+ and Zn2+ on the f lotation and surface charge of smithsonite and dolomite with sodium oleate and sodium silicate. Int. J. Miner. Process. 167, 35–41, 2017.
  • [18] Kashani, A.H.N., Rashchi, F. Separation of oxidized zinc minerals from tailings: influence of flotation reagents. Miner. Eng. 21, 967–972, 2008.
  • [19] DPT. Metal Madenler (Kurun, Çinko, Kadmiyum). 8. Be Yıllık Kalkınma Planı, Madencilik Özel ihtisas Komisyonu Metal Madenler Alt Komisyonu Kurun-Çinko-Kadmiyum Çalıma Grubu Raporu, DPT: 2628- ÖDK 639, Ankara, 2001.
  • [20] Ciccu, R., Curreli, L., Ghiani, M. The beneficiation of lean semi oxidized lead–zinc ores. In: Proc. 13th Int. Minerals Process. Cong., Processing of Oxidized and Mixed Oxide–Sulfide Lead–Zinc Ores, Warsaw, pp. 125–145, 1979.
  • [21] Pereira, C.A., Peres, A.E.C. Reagents in calamine zinc ores flotation. Miner. Eng. 18, 275–277, 2005.
  • [22] Liu W.P., Wang Z.X., Wang X.M., Miller J.D. Smithsonite flotation with lauryl phosphate. Miner. Eng. 147, 106155, 2020.
  • [23] Wu D. D., Ma W.H., Wen S.M., Deng J.S., Bai S.J., Enhancing the sulfidation of smithsonite by superficial dissolution with a novel complexing agent, Miner. Eng. 114, 1–7, 2017.
  • [24] Top S. Dıssolvıng Zınc From Smıthsonıte Mıneral By Dırect Leachıng Method. IV. Internatıonal Istanbul Scıentıfıc Research Congress Aprıl 2-4, 2021.
  • [25] Abdel-Aal, E. A. ‘‘Kinetics of Sulfuric Acid Leaching of Low-grade Zinc Silicate Ore,’’ Hydrometallurgy, 55, 247, 2000.
  • [26] Souza A.D., Peina P.S., Lima E.V.O., Dasilva C.A., Leao V.A. Kinetics of sulphuric acid leaching of a zinc silicate calcine. Hydrometallurgy 89, 337-345, 2007. https://doi.org/10.1016/j.hydromet.2007.08.005.
  • [27] Irannajaad, M., Meshkini, M., Azadmehr, A. R. Leaching of zinc from low grade oxide ore using organic acid. Physicochemical Problems of Mineral Processing, 49(2), 547-555, 2013. https://doi.org/10.5277/ppmp130215
  • [28] İlyas, S., Chi, R., Bhatti, H.N. Column bioleaching of low-grade mining ore containing high level of smithsonite, talc, sphaerocobaltite and azurite. Bioprocess Biosyst Eng 35, 433–440, 2012. https://doi.org/10.1007/s00449-011-0582-3.
  • [29] Abdollahi H., Mirmohammadi M., Ghassa S., Jozanikohan G., Boroumand Z., Tuovinen O. H., Acid bioleaching of select sphalerite samples of variable Zn- and Fe-contents. Hydrometallurgy, Volume 212, 105897, ISSN 0304-386X, 2022. https://doi.org/10.1016/j.hydromet.2022.105897.
  • [30] Bulaev, A., & Melamud, V. Two-Stage Oxidative Leaching of Low-Grade Copper–Zinc Sulfide Concentrate. Microorganisms, 10(9), 1781, 2022. https://doi.org/10.3390/microorganisms1009178
  • [31] Barkusaraey B., Mafigholami F., Faezi Ghasemi R., M., Khayati, G. Zn bio extraction from a zinc rich paint sludge by indigenous Pseudomonas aeruginosa. Chemical Engineering Communications, 209(10), 1397–1412, 2021. https://doi.org/10.1080/00986445.2021.1974410
  • [32] Moinier, D.; Byrne, D.; Amouric, A.; Bonnefoy, V. The Global Redox Responding RegB/RegA Signal Transduction System Regulates the Genes Involved in Ferrous Iron and Inorganic Sulfur Compound Oxidation of the Acidophilic Acidithiobacillus ferrooxidans. Front. Microbiol. 8, 16, 2017.
  • [33] Basavarajappa S, Chandramohan G,Paulo Davim J.”Application of taguchi techniques to study dry sliding wear behaviour of metal matrix composites.Mater Des;28(4): 1393-8, 2007.
  • [34] Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R.N., Sukla, L.B. Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains, Hydrometallurgy, 85, 1–8, 2006.
  • [35] Kır H., Apay S.Optimization of coating parameters in hard chrome coated structural steel by electrolytic method with taguchi method GUSTIJ, 10 (1), pp. 7-14, 2020.
  • [36] Korkmaz, A.A. Optimization of Smokeless Fuel Production from Lignite by Taguchi Orthogonal Design. Solid Fuel Chem. 55, 444–449, 2021. https://doi.org/10.3103/S0361521921060082.
  • [37] Başar C., A., Korkmaz A., A., Önal Y., Utku T., Evaluation of optimum carbonization conditions of the blended domestic polymeric waste, biomass and lignite in the presence of catalyst by Taguchi and ANOVA optimization analysis, Journal of Hazardous Materials Advances, Volume 8, 100164, 2022, ISSN 2772-4166, https://doi.org/10.1016/j.hazadv.2022.100164.
  • [38] Li, W., Feng, Q., & Li, Z. Isolation and Characterization of a Novel Iron–Sulfur Oxidizing Bacterium Acidithiobacillus Ferrooxidans YQ-N3 and its Applicability in Coal Biodesulfurization. Minerals, 2023. https://doi.org/10.3390/min13010095.
  • [39] Feng, Y., Wang, H., Li, H., Chen, X., Du, Z., & Kang, J. Effect of iron transformation on Acidithiobacillus ferrooxidans bio-leaching of clay vanadium residue. Journal of Central South University, 26, 796-805, 2019. https://doi.org/10.1007/s11771-019-4049-z.
  • [40] Chen, H., Zhang, D., Nie, Z., Xia, J., Li, Q., Zhang, R., Yin, H., & Pakostova, E. Reductive dissolution of jarosite by inorganic sulfur compounds catalyzed by Acidithiobacillus thiooxidans. Hydrometallurgy. 2022. https://doi.org/10.1016/j.hydromet.2022.105908.
  • [41] Çiftçi, H., & Atik, S. Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 30(4), 275-284, 2014.
  • [42] Astudillo, C., Acevedo, F. Adaptation of Sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate. Hydrometallurgy 92, 11e15, 2008.
  • [43] Nemati, M., Harrison, S.T.L. Effect of solid loading on thermophilic bioleaching of sulfide minerals. J. Chem. Technol. Biotechnol75, 526e532, 2000.
  • [44] Roy R.K. Design of Experiments Using the Taguchi Approach. G. Taguchi, System of experimental design, quality resources. 1987.
  • [45] Li, X., Azimzadeh, B., Martínez, C., & McBride, M. Pb Mineral Precipitation in Solutions of Sulfate, Carbonate and Phosphate: Measured and Modeled Pb Solubility and Pb2+ Activity. Minerals. 2021. https://doi.org/10.3390/min11060620.
  • [46] Unal R., and Dean E. B. “Taguchi approach to design optimization for quality and cost: an overview,” International Society of Parametric Analysts, pp. 1 -10, 1990.
  • [47] Kashani, A.H.N., Rashchi, F. Separation of oxidized zinc minerals from tailings: influence of flotation reagents. Miner. Eng. 21, 967–972, 2008.
  • [48] Montgomery D. C. Design and analysis of experiments. Global trends and environmental issues in nickel mining Sulfides versus laterites, Ore Geology Reviews, 38, 9–26, 2017.
  • [49] Tiwary V. K., Padmakumar A., and Malik V. R. “Investigations on FSW of nylon micro -particle enhance 3D printed parts applied to a Clark -Y UAV wing,” Welding International, vol. 36, no. 8, pp. 474 -488, 2022.
  • [50] Bayat, O., Sever, E., Bayat, B., Arslan, V., & Poole, C. Bioleaching of Zinc and Iron from Steel Plant Waste using Acidithiobacillus Ferrooxidans. Applied Biochemistry and Biotechnology, 152, 117-126. https://doi.org/10.1007/s12010-008-8257-5, 2009.
  • [51] Heydarian, A., Vakilchap, F., Mousavi, S., & Mousavi, S. Bacterial acidic agents-assisted multi-elemental (Ni, Co, and Li) leaching of used lithium-ion batteries at high pulp densities. Scientific Reports, 15. 2025, https://doi.org/10.1038/s41598-025-00660-9.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimyasal-Biyolojik Kazanma Teknikleri ve Cevher Hazırlama
Bölüm Araştırma Makalesi
Yazarlar

Seda Demirci 0000-0001-9577-4970

Gönderilme Tarihi 23 Temmuz 2025
Kabul Tarihi 2 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 4

Kaynak Göster

IEEE S. Demirci, “Bioleaching of Oxidized Zinc Ore Using Acidithiobacillus Ferrooxidans with Taguchi Approach”, DÜMF MD, c. 16, sy. 4, ss. 1067–1075, 2025, doi: 10.24012/dumf.1748240.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456