Araştırma Makalesi
BibTex RIS Kaynak Göster

Otomobil Radyatöründe Su Bazlı Grafen Nanoakışkan Kullanımının Isıl Verimliliğe Etkisinin Deneysel Olarak İncelenmesi

Yıl 2020, Cilt: 11 Sayı: 3, 1157 - 1166, 30.09.2020
https://doi.org/10.24012/dumf.736458

Öz

Bu çalışmada, bir Renault Clio marka otomobil radyatöründe soğutma akışkanı olarak grafen su bazlı nanoakışkan kullanılmış ve motor soğutma performansı deneysel olarak incelenmiştir. Deneylerde ısı transfer hızındaki artış ve basınç düşüşündeki artış değerleri irdelenmiştir. Deney düzeneği motor soğutma sistemine benzer şekilde tasarlanmıştır. Dört tip çalışma sıvısı kullanılmıştır. Bunlar saf su ve (0.01-0.02-0.03) grafen nanoparçacık konsantrasyonuna sahip nanoakışkanlardır. Deneyde hacimsel debi 4 ile 16 l/dk arasında 6 farklı debide gerçekleştirilmiştir. Otomobil radyatörüne giriş sıcaklığı 70°C olarak sabit tutulmuştur. Deneyler laminer akışta gerçekleştirilmiştir. Reynolds sayısı 224 ile 1482 arasındadır. Yapılan deney sonucunda %0.02 hacimsel nanoparçacık konsantrasyonuna sahip nanokışkan kullanmanın ısı transfer hızında %47 artış sağladığı görülmüştür. Toplam ısı transfer katsayısında % 52 ve Nusselt sayısında % 34 maksimum bir artış elde edilmiştir. Basınç düşüşündeki artış %49 olarak tespit edilmiştir. Nanopartiküllerin konsantrasyonunu artırarak ısıl performansların arttığı gözlemlenmiş ancak nanopartiküllerin konsantrasyonunun %0.02’nin üzerine çıkartıldığında motor soğutma performansının düşmeye başladığı izlenmiştir. Çalışma sonucunda en iyi ısı transfer değerlerine %0.02 grafen bazlı su konsantrasyonu kullanıldığında ulaşılmıştır.

Kaynakça

  • Maxwell, J. C. (1904). A Treatise on Electricity and Magnetism, Oxford University Press, Cambridge.
  • Ali H.M., Azhar M.D., Saleem M., Saeed Q.S., Saieed A., (2015), Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids. Thermal Science 19(6), 2039‒2048.
  • Ali H.M., Ali H., Liaquat H., Maqsood H.T.B., Nadir M.A., (2015), Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids. Energy, 84, 317‒324.
  • Bhogare Ȧ.R.A., Kothawale B., Bodkhe P.P., Gawali A., (2014), Performance investigation of Automobile Radiator operated with Nanofluids Based Coolant. International Journal of Thermal Technologies, 4(2), 2277‒4114.
  • Qasim, M., Sajid Kamran, M., Ammar, M. et al. (2020). Heat Transfer Enhancement of an Automobile Engine Radiator using ZnO Water Base Nanofluids. J. Therm. Sci. 11630 (20),263-9.
  • Ali M., El-Leathy A., Al-Sofyany Z., (2014). The effect of nanofluid concentration on the cooling system of vehicles radiator. Advances in Mechanical Engineering, 6, 962510.
  • Heris S.Z., Pour M.B., Mahian O., Wongwises S., (2014). A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. International Journal of Heat and Mass Transfer, 73, 231‒238.
  • Leong K., Saidur R., Kazi S., Mamun A., (2010). Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Applied Thermal Engineering, 30, 2685‒2692.
  • Peyghambarzadeh S., Hashemabadi S., Jamnani M.S., Hoseini S., (2011). Improving the cooling performance of automobile radiator with Al2O3/water nanofluid. Applied Thermal Engineering, 31(10), 1833‒1838.
  • Peyghambarzadeh S., Hashemabadi S., Naraki M., Vermahmoudi Y., (2013). Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Applied Thermal Engineering, 52(1) ,8‒16.
  • Naraki M., Peyghambarzadeh S., Hashemabadi S., Vermahmoudi Y., (2014). Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. International Journal of Thermal Sciences, 66, 82‒90.
  • Hussein A.M., Bakar R., Kadirgama K., (2014). Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Studies in Thermal Engineering, 2, 50‒61.
  • Nieh H.M., Teng T.P., Yu C.C., (2014). Enhanced heat dissipation of a radiator using oxide nano-coolant. International Journal of Thermal Sciences, 77, 252‒261.
  • Baby, T. T., Ramapraphu, S., (2014). “Enhanced Convective Heat Transfer Using Grap-hene Dispersed Nanofluids,” Nanoscale Res. Lett., 6- 289.
  • Chavan D., Pise A.T., (2014), Performance investigation of an automotive car radiator operated with nanofluid as a coolant. Journal of Thermal Science and Engineering Applications, 6(2), 021010.
  • Heris S.Z., Shokrgozar M., Poorpharhang S., Shanbedi M., Noie S., (2014). Experimental study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant. Journal of Dispersion Science and Technology, 35(5), 677‒ 684.
  • Akhavan-Zanjani, H., Saffar-Avval, M., Mansourkiaei, M., Sharif, F., Ahadi, M. (2016). “Experimental Investigation of Laminar Forced Convective Heat Transfer of Graphene-Water Nanofluid Inside a Circular Tube,” Int. J. Thermal Sci.,100, 316-323.
  • Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S., Seal, S. (2014). “Graphene Based Materials: Past, Present and Future,” Progress in Materials Science, 56, 1178-1271.
  • Novoselov, K., Geim, A. K., Morozov, S., Jiang, D., Grigorieva, M. K. I., Dubonos, S., Firsov, A., (2005). “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, 438 (7065),197-200.
  • Yu, W., Xie, H., Chen, L., Li, Y.. (2010). “Enhancement of Thermal Conductivity of Kerosene-Based Fe3O4 Nanofluids Prepared via Phase-Transfer Method,” Colloids and Surfaces A, 355, (1-3), 109-113.
  • Li Y., Fernández-Seara J., Du K., Pardiñas Á.Á., Latas L.L., Jiang W., (2016). Experimental investigation on heat transfer and pressure drop of ZnO/ethylene glycol-water nanofluids in transition flow. Applied Thermal Engineering, 93, 537‒548.
  • Pak B.C., Cho Y.I., (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151‒170.
  • Holman J.P., Gajda W.J., (2001). Experimental methods for engineers, McGraw-Hill, New York.
  • Shah R.K., London A.L., (1978). Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Advances in heat transfer: Supplement. New York: Academic Press: 109.
  • Zeinali Heris S., Razbani M.A., Estellé P., Mahian O., (2015). Rheological behavior of zinc-oxide nanolubricants. Journal of Dispersion Science and Technology, 36(8), 1073‒1079.
  • Taghizadeh-Tabari Z., Heris S.Z., Moradi M., Kahani M., (2016). The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries. Renewable and Sustainable Energy Reviews, 2016, 58,1318‒ 1326.
  • Please cite this article in press as F. Gümgüm, A. Ö. Aksoy, M. Ş. Guney ,Bhimani V., Rathod P., Sorathiya A., (2013). Experimental study of heat transfer enhancement using water based nanofluids as a new coolant for car radiators. International Journal of Emerging Technology and Advanced Engineering, 2013, 3(6), 295‒302.
  • Maxwell J.C., (1873). A treatise on electricity and magnetism, vol 1. Clarendon Press, Oxford, 1873.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Tarkan Koca 0000-0002-6881-4153

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 12 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 11 Sayı: 3

Kaynak Göster

IEEE T. Koca, “Otomobil Radyatöründe Su Bazlı Grafen Nanoakışkan Kullanımının Isıl Verimliliğe Etkisinin Deneysel Olarak İncelenmesi”, DÜMF MD, c. 11, sy. 3, ss. 1157–1166, 2020, doi: 10.24012/dumf.736458.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456