Bor Cevher Atıklarından Rubidyumun Seçinimli Yöntemlerle Kazanımı
Yıl 2025,
Cilt: 16 Sayı: 2, 451 - 460, 30.06.2025
Ayşegül Yücel
,
Musa Sarıkaya
Öz
Rubidyumun kimyasal ve optoelektronik özelliklerden dolayı biyomedikalden kuantum hesaplamalarına, kuantum ısı motorlarından havacılığa kadar yaygın alanlarda kullanımları araştırılmaktadır. Hatta konumlama uydularında kullanılacak atom saatlerinde de rubidyum atomu kullanılmaktadır. Rubidyumun mineral yatağının bulunmamasına ragmen lityum kaynaklarında birlikte bulunmaktadır. Çalışma kapsamında Eti Maden İşletmeleri Eskişehir Kırka Bor İşletme Müdürlüğü’ne ait atık havuzundan temin edilen bor cevher atığında yapılan XRF analizinde 135,9 ppm rubidyum içeriğitespit edilmiştir. Bor cevher atığından seçimli yöntem kullanarak rubidyum elde edilmeye çalışılmıştır. Bu amaçla çalışma kavurma (i), lityumu karbonat formunda ayırma (ii) ve son olarak ise rubidyumu kazanılması (iii) olarak üç aşamada tamamlanmıştır. Bor cevher atığında bulunan 135,9 ppm rubidyumun yaklaşık %1,5 oranında çözeltiye alınması mümkün olmuştur.
Etik Beyan
Hazırlanan makalede etik kurul izni alınmasına gerek yoktur. Hazırlanan makalede herhangi bir kişi/kurum ile çıkar çatışması bulunmamaktadır.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
TÜBİTAK 1002-A Proje No: 122M910
Teşekkür
Tüm yazarlar TÜBİTAK 1002 A – Hızlı Destek Modülü Programına (Proje No: 122M910) finansal destekleri ve Eti Maden İşletmeleri Eskişehir Kırka Bor İşletme Müdürlüğü’ne numune temini sağladığı için teşekkür eder.
Kaynakça
-
[1] H. Su et al., “Lithium recovery from lepidolite roasted with potassium compounds,” Miner Eng, vol. 145, Jan. 2020, doi: 10.1016/j.mineng.2019.106087.
-
[2] N. Vieceli, C. A. Nogueira, M. F. C. Pereira, F. O. Durão, C. Guimarães, and F. Margarido, “Optimization of Lithium Extraction from Lepidolite by Roasting Using Sodium and Calcium Sulfates,” Jan. 2017, Taylor and Francis Inc. doi: 10.1080/08827508.2016.1262858.
-
[3] T. Ncube, H. Oskierski, G. Senanayake, and B. Z. Dlugogorski, “Two-Step Reaction Mechanism of Roasting Spodumene with Potassium Sulfate,” Inorg Chem, vol. 60, pp. 3620–3625, Mar. 2021, doi: 10.1021/acs.inorgchem.0c03125.
-
[4] Q. X. Yan et al., “Extraction of lithium from lepidolite using chlorination roasting-water leaching process,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 22, pp. 1753–1759, Jul. 2012, doi: 10.1016/S1003-6326(11)61383-6.
-
[5] B. Swain, “Recovery and recycling of lithium: A review,” Jan. 2017, Elsevier B.V. doi: 10.1016/j.seppur.2016.08.031.
-
[6] X. Zhang, T. Aldahri, X. Tan, W. Liu, L. Zhang, and S. Tang, “Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting,” Chemical Engineering and Processing - Process Intensification, vol. 147, Jan. 2020, doi: 10.1016/j.cep.2019.107777.
-
[7] Y. Liu, B. Ma, Y. Lv, C. Wang, and Y. Chen, “Thorough extraction of lithium and rubidium from lepidolite via thermal activation and acid leaching,” Miner Eng, vol. 178, Mar. 2022, doi: 10.1016/j.mineng.2022.107407.
-
[8] H. Guo, M. Lv, G. Kuang, Y. Cao, and H. Wang, “Stepwise heat treatment for fluorine removal on selective leachability of Li from lepidolite using HF/H2SO4 as lixiviant,” Sep Purif Technol, vol. 259, Mar. 2021, doi: 10.1016/j.seppur.2020.118194.
-
[9] G. D. Rosales, E. G. Pinna, D. S. Suarez, and M. H. Rodriguez, “Recovery process of Li, Al and Si from lepidolite by leaching with HF,” Minerals, vol. 7, Mar. 2017, doi: 10.3390/min7030036.
-
[10] H. dong Wang, A. an Zhou, H. Guo, M. hua Lü, and H. zhao Yu, “Kinetics of leaching lithium from lepidolite using mixture of hydrofluoric and sulfuric acid,” J Cent South Univ, vol. 27, pp. 27–36, Jan. 2020, doi: 10.1007/s11771-020-4275-4.
-
[11] J. Mulwanda, G. Senanayake, H. Oskierski, M. Altarawneh, and B. Z. Dlugogorski, “Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition,” Hydrometallurgy, vol. 201, May 2021, doi: 10.1016/j.hydromet.2020.105538.
-
[12] Y. Lv et al., “Efficient Extraction of Lithium and Rubidium from Polylithionite via Alkaline Leaching Combined with Solvent Extraction and Precipitation,” ACS Sustain Chem Eng, vol. 8, pp. 14462–14470, Sep. 2020, doi: 10.1021/acssuschemeng.0c04437.
-
[13] P. K. Choubey, M. S. Kim, R. R. Srivastava, J. C. Lee, and J. Y. Lee, “Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources,” Apr. 2016, Elsevier Ltd. doi: 10.1016/j.mineng.2016.01.010.
-
[14] L. I. Barbosa, G. Valente, R. P. Orosco, and J. A. González, “Lithium extraction from β-spodumene through chlorination with chlorine gas,” Miner Eng, vol. 56, pp. 29–34, 2014, doi: 10.1016/j.mineng.2013.10.026.
-
[15] L. Zhou, T. Yuan, R. Li, Y. Zhong, and X. Lei, “Extraction of rubidium from kaolin clay waste: Process study,” Hydrometallurgy, vol. 158, pp. 61–67, Dec. 2015, doi: 10.1016/j.hydromet.2015.10.010.
-
[16] B. Ertan and Y. Erdoğan, “EMET - ESPEY BÖLGESİNDEKİ BORLU KİLLERDE ESER ELEMENT TAYİNİ,” https://dergipark.org.tr/en/pub/dpufbed/issue/35917/403298.
-
[17] X. Zhang, X. Tan, C. Li, Y. Yi, W. Liu, and L. Zhang, “Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and water leaching,” Hydrometallurgy, vol. 185, pp. 244–249, May 2019, doi: 10.1016/j.hydromet.2019.02.011.
-
[18] C. Xu, J. Wang, and J. Chen, “Solvent Extraction of Strontium and Cesium: A Review of Recent Progress,” Solvent Extraction and Ion Exchange, vol. 30, pp. 623–650, Oct. 2012, doi: 10.1080/07366299.2012.700579.
-
[19] V. N. Romanovskiy et al., “The universal solvent extraction (unex) process. i. development of the unex process solvent for the separation of cesiumstrontium and the actinides from acidic radioactive waste,” Solvent Extraction and Ion Exchange, vol. 19, pp. 1–21, 2001, doi: 10.1081/SEI-100001370.
-
[20] R. A. Leonard et al., “Development of a solvent extraction process for cesium removal from SRS tank waste,” Sep Sci Technol, vol
-
[21] D. E. Horner, K. B. Brown, D. J. Crouse, and B. Weaver, “RECOVERY OF FISSION PRODUCTS FROM WASTE SOLUTIONS BY SOLVENT EXTRACTION,” Dec. 1963. doi: 10.2172/4122516.
-
[22] Z. Li, Y. Pranolo, Z. Zhu, and C. Y. Cheng, “Solvent extraction of cesium and rubidium from brine solutions using 4-tert-butyl-2-(α-methylbenzyl)-phenol,” Hydrometallurgy, vol. 171, pp. 1–7, Aug. 2017, doi: 10.1016/j.hydromet.2017.03.007.
-
[23] S. M. Liu, H. H. Liu, Y. J. Huang, and W. J. Yang, “Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP-kerosene solution,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 25, pp. 329–334, Jan. 2015, doi: 10.1016/S1003-6326(15)63608-1.
-
[24] W. S. Chen, C. H. Lee, Y. F. Chung, K. W. Tien, Y. J. Chen, and Y. A. Chen, “Recovery of rubidium and cesium resources from brine of desalination through t-BAMBP extraction,” Metals (Basel), vol. 10, May 2020, doi: 10.3390/met10050607.
-
[25] Q. Zeng, S. Li, W. Sun, L. Hu, H. Zhong, and Z. He, “Eco-friendly leaching of rubidium from biotite-containing minerals with oxalic acid and effective removal of Hg2+ from aqueous solution using the leaching residues,” J Clean Prod, vol. 306, Jul. 2021, doi: 10.1016/j.jclepro.2021.127167.
-
[26] P. Xing, C. Wang, Y. Chen, and B. Ma, “Rubidium extraction from mineral and brine resources: A review,” Aug. 2021, Elsevier B.V. doi: 10.1016/j.hydromet.2021.105644.
-
[27] E. H. Christiansen, M. G. Best, and J. Radebaugh, “The origin of magma on planetary bodies,” in Planetary Volcanism across the Solar System, Elsevier, 2021, pp. 235–270. doi: 10.1016/B978-0-12-813987-5.00006-7.
[28] W. C. Butterman and R. G. Reese, “Mineral Commodity Profiles -- Rubidium,” 2003. doi: 10.3133/ofr0345.
-
[29] V. T. Luong, D. J. Kang, J. W. An, D. A. Dao, M. J. Kim, and T. Tran, “Iron sulphate roasting for extraction of lithium from lepidolite,” Hydrometallurgy, vol. 141, pp. 8–16, 2014, doi: 10.1016/j.hydromet.2013.09.016.
-
[30] V. T. Luong, D. J. Kang, J. W. An, M. J. Kim, and T. Tran, “Factors affecting the extraction of lithium from lepidolite,” Hydrometallurgy, vol. 134–135, pp. 54–61, 2013, doi: 10.1016/j.hydromet.2013.01.015.
-
[31] L. H. Kalenowski, Recovery of lithium from spodumene-amblygonite mixtures / by L.H. Kalenowski and S.M. Runke. 1952 [Leather Bound] : Kalenowski L. H.: Amazon.com.tr: Kitap, vol. 4863. 1952.
-
[32] P. Taborga, I. Brito, and T. A. Graber, “Effect of additives on size and shape of lithium carbonate crystals,” J Cryst Growth, vol. 460, pp. 5–12, Feb. 2017, doi: 10.1016/j.jcrysgro.2016.12.001.
-
[33] Y. Wang, S. Du, X. Wang, M. Sun, Y. Yang, and J. Gong, “Spherulitic growth and morphology control of lithium carbonate: the stepwise evolution of core-shell structures,” Powder Technol, vol. 355, pp. 617–628, Oct. 2019, doi: 10.1016/j.powtec.2019.07.061.
-
[34] A. Yücel, “Bor Cevher Atıklarından Lityum Titan Oksit Üretiminin Araştırılması,” Doktora, Fen Bilimleri, Malatya, 2022.
-
[35] P. Xing, C. Wang, Y. Chen, and B. Ma, “Rubidium extraction from mineral and brine resources: A review,” Aug. 2021, Elsevier B.V. doi: 10.1016/j.hydromet.2021.105644.
-
[36] A. Yücel, M. Sarıkaya, H. Ç. Yılmaz, and T. Depci, “Extraction of lithium from boron ore wastes and precipitation as lithium carbonate,” Canadian Metallurgical Quarterly, 2025, doi: 10.1080/00084433.2025.2471612.
-
[37] “Fact box,” https://periodic-table.rsc.org/element/37/rubidium.
-
[38] Y. Liu, B. Ma, Y. Lv, C. Wang, and Y. Chen, “Selective recovery and efficient separation of lithium, rubidium, and cesium from lepidolite ores,” Sep Purif Technol, vol. 288, May 2022, doi: 10.1016/j.seppur.2022.120667.
Recovery of Rubidium from Boron Ore Wastes by Selective Methods
Yıl 2025,
Cilt: 16 Sayı: 2, 451 - 460, 30.06.2025
Ayşegül Yücel
,
Musa Sarıkaya
Öz
Due to rubidium's chemical and optoelectronic properties, its usage in widespread areas ranging from biomedicine to quantum calculations, from quantum heat engines to aviation, is being investigated. Even the rubidium atom is used in atomic clocks to be used in positioning satellites. Although rubidium does not have a mineral deposit, it is found together in lithium sources. Within the scope of the study, 135.9 ppm rubidium content was determined in the XRF analysis performed on boron ore waste obtained from the waste pool belonging to Eti Mining Operations Eskişehir Kırka Boron Operations Directorate. Rubidium was attempted to be obtained from boron ore waste using a selective method. For this purpose, the study was completed in three stages: roasting (i), separating lithium in carbonate form (ii), and finally recovering rubidium (iii). It was possible to take approximately 1.5% of the 135.9 ppm rubidium found in the boron ore waste into solution.
Proje Numarası
TÜBİTAK 1002-A Proje No: 122M910
Kaynakça
-
[1] H. Su et al., “Lithium recovery from lepidolite roasted with potassium compounds,” Miner Eng, vol. 145, Jan. 2020, doi: 10.1016/j.mineng.2019.106087.
-
[2] N. Vieceli, C. A. Nogueira, M. F. C. Pereira, F. O. Durão, C. Guimarães, and F. Margarido, “Optimization of Lithium Extraction from Lepidolite by Roasting Using Sodium and Calcium Sulfates,” Jan. 2017, Taylor and Francis Inc. doi: 10.1080/08827508.2016.1262858.
-
[3] T. Ncube, H. Oskierski, G. Senanayake, and B. Z. Dlugogorski, “Two-Step Reaction Mechanism of Roasting Spodumene with Potassium Sulfate,” Inorg Chem, vol. 60, pp. 3620–3625, Mar. 2021, doi: 10.1021/acs.inorgchem.0c03125.
-
[4] Q. X. Yan et al., “Extraction of lithium from lepidolite using chlorination roasting-water leaching process,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 22, pp. 1753–1759, Jul. 2012, doi: 10.1016/S1003-6326(11)61383-6.
-
[5] B. Swain, “Recovery and recycling of lithium: A review,” Jan. 2017, Elsevier B.V. doi: 10.1016/j.seppur.2016.08.031.
-
[6] X. Zhang, T. Aldahri, X. Tan, W. Liu, L. Zhang, and S. Tang, “Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting,” Chemical Engineering and Processing - Process Intensification, vol. 147, Jan. 2020, doi: 10.1016/j.cep.2019.107777.
-
[7] Y. Liu, B. Ma, Y. Lv, C. Wang, and Y. Chen, “Thorough extraction of lithium and rubidium from lepidolite via thermal activation and acid leaching,” Miner Eng, vol. 178, Mar. 2022, doi: 10.1016/j.mineng.2022.107407.
-
[8] H. Guo, M. Lv, G. Kuang, Y. Cao, and H. Wang, “Stepwise heat treatment for fluorine removal on selective leachability of Li from lepidolite using HF/H2SO4 as lixiviant,” Sep Purif Technol, vol. 259, Mar. 2021, doi: 10.1016/j.seppur.2020.118194.
-
[9] G. D. Rosales, E. G. Pinna, D. S. Suarez, and M. H. Rodriguez, “Recovery process of Li, Al and Si from lepidolite by leaching with HF,” Minerals, vol. 7, Mar. 2017, doi: 10.3390/min7030036.
-
[10] H. dong Wang, A. an Zhou, H. Guo, M. hua Lü, and H. zhao Yu, “Kinetics of leaching lithium from lepidolite using mixture of hydrofluoric and sulfuric acid,” J Cent South Univ, vol. 27, pp. 27–36, Jan. 2020, doi: 10.1007/s11771-020-4275-4.
-
[11] J. Mulwanda, G. Senanayake, H. Oskierski, M. Altarawneh, and B. Z. Dlugogorski, “Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition,” Hydrometallurgy, vol. 201, May 2021, doi: 10.1016/j.hydromet.2020.105538.
-
[12] Y. Lv et al., “Efficient Extraction of Lithium and Rubidium from Polylithionite via Alkaline Leaching Combined with Solvent Extraction and Precipitation,” ACS Sustain Chem Eng, vol. 8, pp. 14462–14470, Sep. 2020, doi: 10.1021/acssuschemeng.0c04437.
-
[13] P. K. Choubey, M. S. Kim, R. R. Srivastava, J. C. Lee, and J. Y. Lee, “Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources,” Apr. 2016, Elsevier Ltd. doi: 10.1016/j.mineng.2016.01.010.
-
[14] L. I. Barbosa, G. Valente, R. P. Orosco, and J. A. González, “Lithium extraction from β-spodumene through chlorination with chlorine gas,” Miner Eng, vol. 56, pp. 29–34, 2014, doi: 10.1016/j.mineng.2013.10.026.
-
[15] L. Zhou, T. Yuan, R. Li, Y. Zhong, and X. Lei, “Extraction of rubidium from kaolin clay waste: Process study,” Hydrometallurgy, vol. 158, pp. 61–67, Dec. 2015, doi: 10.1016/j.hydromet.2015.10.010.
-
[16] B. Ertan and Y. Erdoğan, “EMET - ESPEY BÖLGESİNDEKİ BORLU KİLLERDE ESER ELEMENT TAYİNİ,” https://dergipark.org.tr/en/pub/dpufbed/issue/35917/403298.
-
[17] X. Zhang, X. Tan, C. Li, Y. Yi, W. Liu, and L. Zhang, “Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and water leaching,” Hydrometallurgy, vol. 185, pp. 244–249, May 2019, doi: 10.1016/j.hydromet.2019.02.011.
-
[18] C. Xu, J. Wang, and J. Chen, “Solvent Extraction of Strontium and Cesium: A Review of Recent Progress,” Solvent Extraction and Ion Exchange, vol. 30, pp. 623–650, Oct. 2012, doi: 10.1080/07366299.2012.700579.
-
[19] V. N. Romanovskiy et al., “The universal solvent extraction (unex) process. i. development of the unex process solvent for the separation of cesiumstrontium and the actinides from acidic radioactive waste,” Solvent Extraction and Ion Exchange, vol. 19, pp. 1–21, 2001, doi: 10.1081/SEI-100001370.
-
[20] R. A. Leonard et al., “Development of a solvent extraction process for cesium removal from SRS tank waste,” Sep Sci Technol, vol
-
[21] D. E. Horner, K. B. Brown, D. J. Crouse, and B. Weaver, “RECOVERY OF FISSION PRODUCTS FROM WASTE SOLUTIONS BY SOLVENT EXTRACTION,” Dec. 1963. doi: 10.2172/4122516.
-
[22] Z. Li, Y. Pranolo, Z. Zhu, and C. Y. Cheng, “Solvent extraction of cesium and rubidium from brine solutions using 4-tert-butyl-2-(α-methylbenzyl)-phenol,” Hydrometallurgy, vol. 171, pp. 1–7, Aug. 2017, doi: 10.1016/j.hydromet.2017.03.007.
-
[23] S. M. Liu, H. H. Liu, Y. J. Huang, and W. J. Yang, “Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP-kerosene solution,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 25, pp. 329–334, Jan. 2015, doi: 10.1016/S1003-6326(15)63608-1.
-
[24] W. S. Chen, C. H. Lee, Y. F. Chung, K. W. Tien, Y. J. Chen, and Y. A. Chen, “Recovery of rubidium and cesium resources from brine of desalination through t-BAMBP extraction,” Metals (Basel), vol. 10, May 2020, doi: 10.3390/met10050607.
-
[25] Q. Zeng, S. Li, W. Sun, L. Hu, H. Zhong, and Z. He, “Eco-friendly leaching of rubidium from biotite-containing minerals with oxalic acid and effective removal of Hg2+ from aqueous solution using the leaching residues,” J Clean Prod, vol. 306, Jul. 2021, doi: 10.1016/j.jclepro.2021.127167.
-
[26] P. Xing, C. Wang, Y. Chen, and B. Ma, “Rubidium extraction from mineral and brine resources: A review,” Aug. 2021, Elsevier B.V. doi: 10.1016/j.hydromet.2021.105644.
-
[27] E. H. Christiansen, M. G. Best, and J. Radebaugh, “The origin of magma on planetary bodies,” in Planetary Volcanism across the Solar System, Elsevier, 2021, pp. 235–270. doi: 10.1016/B978-0-12-813987-5.00006-7.
[28] W. C. Butterman and R. G. Reese, “Mineral Commodity Profiles -- Rubidium,” 2003. doi: 10.3133/ofr0345.
-
[29] V. T. Luong, D. J. Kang, J. W. An, D. A. Dao, M. J. Kim, and T. Tran, “Iron sulphate roasting for extraction of lithium from lepidolite,” Hydrometallurgy, vol. 141, pp. 8–16, 2014, doi: 10.1016/j.hydromet.2013.09.016.
-
[30] V. T. Luong, D. J. Kang, J. W. An, M. J. Kim, and T. Tran, “Factors affecting the extraction of lithium from lepidolite,” Hydrometallurgy, vol. 134–135, pp. 54–61, 2013, doi: 10.1016/j.hydromet.2013.01.015.
-
[31] L. H. Kalenowski, Recovery of lithium from spodumene-amblygonite mixtures / by L.H. Kalenowski and S.M. Runke. 1952 [Leather Bound] : Kalenowski L. H.: Amazon.com.tr: Kitap, vol. 4863. 1952.
-
[32] P. Taborga, I. Brito, and T. A. Graber, “Effect of additives on size and shape of lithium carbonate crystals,” J Cryst Growth, vol. 460, pp. 5–12, Feb. 2017, doi: 10.1016/j.jcrysgro.2016.12.001.
-
[33] Y. Wang, S. Du, X. Wang, M. Sun, Y. Yang, and J. Gong, “Spherulitic growth and morphology control of lithium carbonate: the stepwise evolution of core-shell structures,” Powder Technol, vol. 355, pp. 617–628, Oct. 2019, doi: 10.1016/j.powtec.2019.07.061.
-
[34] A. Yücel, “Bor Cevher Atıklarından Lityum Titan Oksit Üretiminin Araştırılması,” Doktora, Fen Bilimleri, Malatya, 2022.
-
[35] P. Xing, C. Wang, Y. Chen, and B. Ma, “Rubidium extraction from mineral and brine resources: A review,” Aug. 2021, Elsevier B.V. doi: 10.1016/j.hydromet.2021.105644.
-
[36] A. Yücel, M. Sarıkaya, H. Ç. Yılmaz, and T. Depci, “Extraction of lithium from boron ore wastes and precipitation as lithium carbonate,” Canadian Metallurgical Quarterly, 2025, doi: 10.1080/00084433.2025.2471612.
-
[37] “Fact box,” https://periodic-table.rsc.org/element/37/rubidium.
-
[38] Y. Liu, B. Ma, Y. Lv, C. Wang, and Y. Chen, “Selective recovery and efficient separation of lithium, rubidium, and cesium from lepidolite ores,” Sep Purif Technol, vol. 288, May 2022, doi: 10.1016/j.seppur.2022.120667.