Araştırma Makalesi
BibTex RIS Kaynak Göster

Design and Investigation of the Lime Based Grouts Incorporated with Nanofiber Cellulose

Yıl 2025, Cilt: 16 Sayı: 3, 813 - 823
https://doi.org/10.24012/dumf.1687825

Öz

It is known that various fibers were used as additives in the original mortars of historical buildings and these fibers improved the physical and mechanical properties of the mortars. Today, the need for sustainable nanomaterials in building materials has led researchers to investigate nanocelluloses. In this study, nanofiber cellulose (NFS) incorporated lime-based grouts were produced and the fresh and hardened state properties of the materials were examined. The main purpose of the study is to develop a new lime-based grout that can be used for consolidation of historical buildings. According to the test results, although the addition of NFS negatively affects the fresh state properties, it significantly increases the mechanical properties and shrinkage resistance. It has also been observed that NFS works as a natural viscosity modifier and can be preferred over synthetic additives.

Proje Numarası

FYL-2023-5642

Kaynakça

  • [1] N. Davey, A History of Building Materials. London: Phoenix House, 1961.
  • [2] L. B. Sickels, “Organic Additives in Mortars,” Edinburgh Architecture Research, vol. 8, pp. 7–20, 1981.
  • [3] Z. Ahunbay, Tarihi Çevre Koruma ve Restorasyon. İstanbul: YEM Yayın, 1999.
  • [4] G. Penelis, M. Karaveziroglou and J. Papayanni, “Grouts for Repairing and Strengthening Old Masonry Structures,” in Structural Repair and Maintenance of Historical Buildings, C. A. Brebbia, Ed., Basel, Switzerland: Computational Mechanics Publications, 1989, pp. 79–188.
  • [5] L. Binda, A. Saisi and C. Tedeschi, “Compatibility of Materials Used for Repair of Masonry Buildings: Research and Applications,” in Fracture and Failure of Natural Building Stones – Applications in the Restoration of Ancient Monuments. Netherlands: Springer, 2006.
  • [6] D. A. Lange, C. Ouyang and S. P. Shah, “Behavior of Cement Based Matrices Reinforced by Randomly Dispersed Microfibers,” Advanced Cement Based Materials, vol. 3, no. 1, pp. 20–30, 1996.
  • [7] W. Yao, J. Li and K. Wu, “Mechanical Properties of Hybrid Fiber-Reinforced Concrete at Low Fiber Volume Fraction,” Cement and Concrete Research, vol. 33, no. 1, pp. 27–30, 2003.
  • [8] S. Pascal, A. Alliche and P. Pilvin, “Mechanical Behaviour of Polymer Modified Mortars,” Materials Science and Engineering: A, vol. 380, no. 1–2, pp. 1–8, 2004.
  • [9] M. L. Santarelli, F. Sbardella, M. Zuena, J. Tirillo and F. Sarsini, “Basalt Fiber Reinforced Natural Hydraulic Lime Mortars: A Potential Bio-Based Material for Restoration,” Materials & Design, vol. 63, pp. 398–406, 2014.
  • [10] M. M. Barbero-Barrera and N. F. Medina, “The Effect of Polypropylene Fibers on Graphite-Natural Hydraulic Lime Pastes,” Construction and Building Materials, vol. 184, pp. 591–601, 2018.
  • [11] M. Ardanuy, J. Claramunt, R. Arévalo, F. Parés, E. Aracri and T. Vidal, “Nanofibrated Cellulose (NFS) as a Potential Reinforcement for High Performance Cement Mortar Composites,” BioResources, vol. 7, pp. 3883–3894, 2012.
  • [12] J. Goncalves, Y. Boluk and V. Bindiganavile, “Turbidity-Based Measurement of Bleeding in Fresh Cement Paste as Affected by Cellulose Nanofibres,” Cement and Concrete Composites, vol. 123, Art. no. 104197, 2021.
  • [13] H. H. Kolour, M. Ahmed, E. Alyaseen and E. N. Landis, “An Investigation on the Effects of Cellulose Nanofibrils on the Performance of Cement Paste and Concrete,” Advances in Civil Engineering Materials, vol. 7, pp. 463–478, 2018.
  • [14] L. G. Baltazar, F. M. A. Henriques, F. Jorne and M. T. Cidade, “The Use of Rheology in the Study of the Composition Effects on the Fresh Behaviour of Hydraulic Lime Grouts for Injection of Masonry Walls,” Rheologica Acta, vol. 52, no. 2, pp. 127–138, 2013.
  • [15] F. Jorne, F. M. A. Henriques and L. G. Baltazar, “Evaluation of Consolidation of Grout Injection with Ultrasonic Tomography,” Construction and Building Materials, vol. 66, pp. 494–506, 2014.
  • [16] ASTM D6910, Standard Test Method for Marsh Funnel Viscosity of Clay Construction Slurries. ASTM International, 2009.
  • [17] TS EN 445, Şerbet-Öngerilmeli Tendonlar İçin Deney Yöntemleri. Türk Standartları Enstitüsü, 2012.
  • [18] BS EN 1771, Products and Systems for the Protection and Repair of Concrete Structures – Test Methods – Determination of Injectability and Splitting Tests. British Standards Institution, 2004.
  • [19] ASTM C940, Standard Test Method for Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory. ASTM International, 2010.
  • [20] TS EN 1015-11, Kâgir Harcı – Deney Metotları – Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımının Tayini. Türk Standartları Enstitüsü, 2000.
  • [21] TS EN 447, Şerbet-Öngerilmeli Tendonlar İçin Temel Gerekler, Türk Standartları Enstitüsü, 2012.
  • [22] A. Kalagri, A. Miltiadou-Fezans, and E. Vintzileou, “Design and evaluation of hydraulic lime grouts for the strengthening of stone masonry historic structures,” Materials and Structures, vol. 43, pp. 1135–1146, 2010.
  • [23] A. Miltiadou-Fezans, “Fluidity of hydraulic grouts for masonry strengthening,” Materials and Structures, vol. 45, pp. 1817–1828, 2012.
  • [24] A. Bras and F. M. A. Henriques, “Natural hydraulic lime based grouts–The selection of grout injection parameters for masonry consolidation,” Construction and Building Materials, vol. 26, no. 1, pp. 135–144, 2012.
  • [25] A. Miltiadou-Fezans and T. P. Tassios, “Stability of hydraulic grouts for masonry strengthening,” Materials and Structures, vol. 46, no. 10, pp. 1633–1652, 2013.
  • [26] B. Dinç-Sengönül, D. Oktay and N. Yüzer, “Effect of Temperature, Resting Time and Brick Dust (Horasan) on the Rheological Properties of Hydraulic Lime-Based Grouts,” Construction and Building Materials, vol. 265, Art. no. 120644, 2020.
  • [27] TS EN 15801, Kültürel Varlıkların Korunması – Deney Metotları – Suyun Kılcal Emiliminin Tayini. Türk Standartları Enstitüsü, 2010

Nanofiber Selüloz Katkılı Kireç Esaslı Enjeksiyon Malzemelerinin Tasarımı ve İncelenmesi

Yıl 2025, Cilt: 16 Sayı: 3, 813 - 823
https://doi.org/10.24012/dumf.1687825

Öz

Tarihi yapılardaki özgün harçlarda çeşitli liflerin ilave malzeme olarak kullanıldığı ve bu liflerin harçların fiziksel ve mekanik özelliklerini geliştirdiği bilinmektedir. Günümüzde yapı malzemelerinde sürdürülebilir nano malzemelere duyulan ihtiyaç araştırmacıları nanoselülozlara yönlendirmiştir. Bu çalışmada kireç esaslı ve nanofiber selüloz (NFS) katkılı enjeksiyon malzemeleri üretilerek malzemelerin taze ve sertleşmiş hal özellikleri incelenmiştir. Çalışmanın amacı; tarihi yapıların onarımında ve güçlendirilmesinde kullanılabilecek yeni bir kireç esaslı enjeksiyon malzemesi geliştirmektir. Deney sonuçlarına göre NFS ilavesi akışkanlık ve penetrasyon özelliklerini olumsuz etkilese de mekanik özellikleri ve rötre direncini ciddi oranda artırmaktadır. Ayrıca NFS’nin, doğal viskozite düzenleyici olarak çalıştığı ve sentetik katkı maddeleri yerine tercih edilebileceği görülmüştür.

Destekleyen Kurum

Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

FYL-2023-5642

Teşekkür

Bu çalışmayı, FYL-2023-5642 numaralı projesi ile destekleyen Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne teşekkür ederiz.

Kaynakça

  • [1] N. Davey, A History of Building Materials. London: Phoenix House, 1961.
  • [2] L. B. Sickels, “Organic Additives in Mortars,” Edinburgh Architecture Research, vol. 8, pp. 7–20, 1981.
  • [3] Z. Ahunbay, Tarihi Çevre Koruma ve Restorasyon. İstanbul: YEM Yayın, 1999.
  • [4] G. Penelis, M. Karaveziroglou and J. Papayanni, “Grouts for Repairing and Strengthening Old Masonry Structures,” in Structural Repair and Maintenance of Historical Buildings, C. A. Brebbia, Ed., Basel, Switzerland: Computational Mechanics Publications, 1989, pp. 79–188.
  • [5] L. Binda, A. Saisi and C. Tedeschi, “Compatibility of Materials Used for Repair of Masonry Buildings: Research and Applications,” in Fracture and Failure of Natural Building Stones – Applications in the Restoration of Ancient Monuments. Netherlands: Springer, 2006.
  • [6] D. A. Lange, C. Ouyang and S. P. Shah, “Behavior of Cement Based Matrices Reinforced by Randomly Dispersed Microfibers,” Advanced Cement Based Materials, vol. 3, no. 1, pp. 20–30, 1996.
  • [7] W. Yao, J. Li and K. Wu, “Mechanical Properties of Hybrid Fiber-Reinforced Concrete at Low Fiber Volume Fraction,” Cement and Concrete Research, vol. 33, no. 1, pp. 27–30, 2003.
  • [8] S. Pascal, A. Alliche and P. Pilvin, “Mechanical Behaviour of Polymer Modified Mortars,” Materials Science and Engineering: A, vol. 380, no. 1–2, pp. 1–8, 2004.
  • [9] M. L. Santarelli, F. Sbardella, M. Zuena, J. Tirillo and F. Sarsini, “Basalt Fiber Reinforced Natural Hydraulic Lime Mortars: A Potential Bio-Based Material for Restoration,” Materials & Design, vol. 63, pp. 398–406, 2014.
  • [10] M. M. Barbero-Barrera and N. F. Medina, “The Effect of Polypropylene Fibers on Graphite-Natural Hydraulic Lime Pastes,” Construction and Building Materials, vol. 184, pp. 591–601, 2018.
  • [11] M. Ardanuy, J. Claramunt, R. Arévalo, F. Parés, E. Aracri and T. Vidal, “Nanofibrated Cellulose (NFS) as a Potential Reinforcement for High Performance Cement Mortar Composites,” BioResources, vol. 7, pp. 3883–3894, 2012.
  • [12] J. Goncalves, Y. Boluk and V. Bindiganavile, “Turbidity-Based Measurement of Bleeding in Fresh Cement Paste as Affected by Cellulose Nanofibres,” Cement and Concrete Composites, vol. 123, Art. no. 104197, 2021.
  • [13] H. H. Kolour, M. Ahmed, E. Alyaseen and E. N. Landis, “An Investigation on the Effects of Cellulose Nanofibrils on the Performance of Cement Paste and Concrete,” Advances in Civil Engineering Materials, vol. 7, pp. 463–478, 2018.
  • [14] L. G. Baltazar, F. M. A. Henriques, F. Jorne and M. T. Cidade, “The Use of Rheology in the Study of the Composition Effects on the Fresh Behaviour of Hydraulic Lime Grouts for Injection of Masonry Walls,” Rheologica Acta, vol. 52, no. 2, pp. 127–138, 2013.
  • [15] F. Jorne, F. M. A. Henriques and L. G. Baltazar, “Evaluation of Consolidation of Grout Injection with Ultrasonic Tomography,” Construction and Building Materials, vol. 66, pp. 494–506, 2014.
  • [16] ASTM D6910, Standard Test Method for Marsh Funnel Viscosity of Clay Construction Slurries. ASTM International, 2009.
  • [17] TS EN 445, Şerbet-Öngerilmeli Tendonlar İçin Deney Yöntemleri. Türk Standartları Enstitüsü, 2012.
  • [18] BS EN 1771, Products and Systems for the Protection and Repair of Concrete Structures – Test Methods – Determination of Injectability and Splitting Tests. British Standards Institution, 2004.
  • [19] ASTM C940, Standard Test Method for Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory. ASTM International, 2010.
  • [20] TS EN 1015-11, Kâgir Harcı – Deney Metotları – Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımının Tayini. Türk Standartları Enstitüsü, 2000.
  • [21] TS EN 447, Şerbet-Öngerilmeli Tendonlar İçin Temel Gerekler, Türk Standartları Enstitüsü, 2012.
  • [22] A. Kalagri, A. Miltiadou-Fezans, and E. Vintzileou, “Design and evaluation of hydraulic lime grouts for the strengthening of stone masonry historic structures,” Materials and Structures, vol. 43, pp. 1135–1146, 2010.
  • [23] A. Miltiadou-Fezans, “Fluidity of hydraulic grouts for masonry strengthening,” Materials and Structures, vol. 45, pp. 1817–1828, 2012.
  • [24] A. Bras and F. M. A. Henriques, “Natural hydraulic lime based grouts–The selection of grout injection parameters for masonry consolidation,” Construction and Building Materials, vol. 26, no. 1, pp. 135–144, 2012.
  • [25] A. Miltiadou-Fezans and T. P. Tassios, “Stability of hydraulic grouts for masonry strengthening,” Materials and Structures, vol. 46, no. 10, pp. 1633–1652, 2013.
  • [26] B. Dinç-Sengönül, D. Oktay and N. Yüzer, “Effect of Temperature, Resting Time and Brick Dust (Horasan) on the Rheological Properties of Hydraulic Lime-Based Grouts,” Construction and Building Materials, vol. 265, Art. no. 120644, 2020.
  • [27] TS EN 15801, Kültürel Varlıkların Korunması – Deney Metotları – Suyun Kılcal Emiliminin Tayini. Türk Standartları Enstitüsü, 2010
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Ali Sayar 0009-0008-6133-5871

Didem Oktay 0000-0002-0093-1994

Proje Numarası FYL-2023-5642
Erken Görünüm Tarihi 30 Eylül 2025
Yayımlanma Tarihi 4 Ekim 2025
Gönderilme Tarihi 30 Nisan 2025
Kabul Tarihi 21 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

IEEE A. Sayar ve D. Oktay, “Nanofiber Selüloz Katkılı Kireç Esaslı Enjeksiyon Malzemelerinin Tasarımı ve İncelenmesi”, DÜMF MD, c. 16, sy. 3, ss. 813–823, 2025, doi: 10.24012/dumf.1687825.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456