Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation the effect of using different aggregates and binders in pervious piles for the soil stabilization of a weak soil

Yıl 2025, Cilt: 16 Sayı: 3, 825 - 832
https://doi.org/10.24012/dumf.1702843

Öz

Within the scope of this study, experimental studies were carried out to investigate the behavior of pervious piles using natural aggregate and construction demolition waste aggregate. In this study, geopolymer paste was obtained by using fly ash and blast furnace slag with alkali activator to form pervious geopolymer piles while using traditional cement for pervious concrete piles. In the first stage of the experimental studies, the compressive strengths of the pervious piles were determined, water absorption capacities and ultrasonic impact velocities were measured. Then, the piles were placed in a weak soil and their load-deformation behavior was investigated. When the results obtained within the scope of the study were evaluated, it was found that pervious concrete and geopolymer piles significantly increased the bearing capacity of the unreinforced soil. Compared to the unreinforced soil, 3 times more bearing capacity was obtained with pervious geopolymer piles when using natural aggregates and 2 times more bearing capacity was obtained with pervious concrete piles when using construction demolition waste aggregates. Construction demolition waste aggregates increased the water absorption capacity, while the use of natural aggregates increased the ultrasonic pulse velocity. In projects with lower bearing capacity requirements, the usage of pervious geopolymer piles with construction demolition waste aggregates may provide the utilization of rubble and production waste precursors. The transformation/recycling of post-disaster wastes is vital for the regeneration of the region and the public health.

Kaynakça

  • [1] T. Sarici and R. T. Ozcan, “Interpretation of geotechnical risk maps for Malatya province in terms of earthquake sequence on February 6, 2023,” Environ. Earth Sci., vol. 84, no. 3, p. 91, 2025.
  • [2] A. Demir and B. Ok, “Uplift response of multi-plate helical anchors in cohesive soil,” Geomech. Eng., vol. 8, no. 4, 2015.
  • [3] R. S. V. Rashma, B. R. Jayalekshmi, and R. Shivashankar, “Liquefaction mitigation potential of improved ground using pervious concrete columns,” Indian Geotech. J., vol. 52, no. 1, pp. 205–226, 2022.
  • [4] M. T. Suleiman, L. Ni, and A. Raich, “Development of pervious concrete pile ground-improvement alternative and behavior under vertical loading,” J. Geotech. Geoenviron. Eng., vol. 140, no. 7, p. 04014035, 2014.
  • [5] T. Munaga, M. M. Khan, and K. K. Gonavaram, “Axial and lateral loading behaviour of pervious concrete pile,” Indian Geotech. J., vol. 50, no. 3, pp. 505–513, 2020.
  • [6] H. Xia, G. Du, J. Cai, and C. Sun, “Model tests on the bearing capacity of pervious concrete piles in silt and sand,” Geomech. Eng., vol. 38, no. 1, pp. 79–91, 2024.
  • [7] F. Xu et al., “Influence of aggregate reinforcement treatment on the performance of geopolymer recycled aggregate permeable concrete: From experimental studies to PFC 3D simulations,” Constr. Build. Mater., vol. 354, p. 129222, 2022.
  • [8] M. Muthu and Ł. Sadowski, “Performance of permeable concrete mixes based on cement and geopolymer in aggressive aqueous environments,” J. Build. Eng., vol. 76, p. 107143, 2023.
  • [9] T. Sarici and M. Ozcan, “Using geopolymer coated and uncoated geotextile as a hybrid method to improve uplift capacity of screw piles in cohesionless soil,” Alexandria Eng. J., vol. 105, pp. 666–681, 2024.
  • [10] A. Yolcu, M. B. Karakoç, E. Ekinci, A. Özcan, and M. A. Sağır, “Effect of binder dosage and the use of waste rubber fiber on the mechanical and durability performance of geopolymer concrete,” J. Build. Eng., vol. 61, p. 105162, 2022.
  • [11] S. Gupta, A. GuhaRay, A. Kar, and V. P. Komaravolu, “Performance of alkali-activated binder-treated jute geotextile as reinforcement for subgrade stabilization,” Int. J. Geotech. Eng., 2021.
  • [12] S. Parathi, P. Nagarajan, and S. A. Pallikkara, “Ecofriendly geopolymer concrete: A comprehensive review,” Clean Technol. Environ. Policy, vol. 23, pp. 1701–1713, 2021.
  • [13] A. Vásquez, V. Cárdenas, R. A. Robayo, and R. M. De Gutiérrez, “Geopolymer based on concrete demolition waste,” Adv. Powder Technol., vol. 27, no. 4, pp. 1173–1179, 2016.
  • [14] S. Dadsetan, H. Siad, M. Lachemi, and M. Sahmaran, “Construction and demolition waste in geopolymer concrete technology: a review,” Mag. Concr. Res., vol. 71, no. 23, pp. 1232–1252, 2019.
  • [15] O. Youssf, D. Safaa Eldin, and A. M. Tahwia, “Eco-Friendly High-Strength Geopolymer Mortar from Construction and Demolition Wastes,” Infrastructures, vol. 10, no. 4, p. 76, 2025.
  • [16] Y. R. V., S. Ganesh Kumar, and G. Santha Kumar, “Sustainable pervious concrete pile for liquefaction and reliquefaction mitigation,” Géotech. Lett., vol. 15, no. 1, pp. 32–37, 2025.
  • [17] G. Doğdu ve S. N. Alkan, “Deprem Sonrası Oluşan İnşaat ve Yıkıntı Atıklarının Değerlendirilmesi: 6 Şubat 2023 Kahramanmaraş Depremleri.” Artvin Çoruh Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 1(1), 38-50, 2023.
  • [18] A. Ahmad, U. Khalid, Z. U. Rehman, and M. J. Iqbal, “Reclaimed brick masonry waste recycling in macro–micro amelioration of cemented clayey soil: an eco-friendly construction waste solution,” J. Mater. Cycles Waste Manag., vol. 27, pp. 1–22, 2025.
  • [19] T. Sarici, T. Geckil, B. Ok, and H. S. Aksoy, “An investigation of the usability of alkali-activated blast furnace slag-additive construction demolition waste as filling material,” Materials, vol. 18, no. 2, p. 398, 2025.
  • [20] M. Hussain, H. Zmamou, A. Provost, P. A. H. Romero, A. Mahieu, N. Leblanc, and A. Kane et. al., “Stabilization and recycling of sand in pedestrian walkways,” Buildings, vol. 14, no. 1, p. 205, 2024.
  • [21] T. Sarici, “Puzolan ile güçlendirilmiş inşaat ve yıkıntı atıklarının granüler dolgu olarak kullanılabilirliğinin değerlendirilmesi,” Ph.D. dissertation, Dept. of Civil Eng., İnönü Univ., Malatya, Turkey, 2019.
  • [22] Standard Test Method for Particle-Size Analysis of Soils, ASTM D422–63, ASTM Int’l., 2007.
  • [23] Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate, ASTM D4791-10, ASTM Int’l., 2010.
  • [24] Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine, ASTM C131-06, ASTM Int’l., 2010.
  • [25] Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM D854-02, ASTM Int’l., 2002.
  • [26] Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM C127-24, ASTM Int’l., 2024.
  • [27] Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, ASTM D4254, ASTM Int’l., 2017.
  • [28] Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM D698-12, ASTM Int’l., 2021.
  • [29] Ö. Çetkin, “Zemin stabilizasyonunun karayolu üstyapı kalınlığına ve maliyetine etkisi,” M.S. thesis, Dept. of Civil Eng., İnönü Univ., Malatya, Turkey, 2022.
  • [30] Standard Test Method for Pulse Velocity Through Concrete, ASTM C597–16, ASTM International, 2016.
  • [31] Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System, ASTM-D2487, ASTM Int’l., 2017.
  • [32] K. Terzaghi and R. B. Peck, “Soil Mechanics in Engineering Practice”, 2nd edition, Wiley Publications, New York, 1967.

Zayıf bir zeminin ıslahı için oluşturulan geçirimli kazıklarda farklı agrega ve bağlayıcı kullanımının etkisinin araştırılması

Yıl 2025, Cilt: 16 Sayı: 3, 825 - 832
https://doi.org/10.24012/dumf.1702843

Öz

Bu çalışma kapsamında doğal ve inşaat yıkıntı atığından elde edilen agrega kullanılarak oluşturulan geçirimli kazıkların davranışını araştırmak üzere deneysel çalışmalar gerçekleştirilmiştir. Bu çalışma kapsamında geçirimli beton kazık için geleneksel çimento kullanılırken geçirimli geopolimer kazık oluşturmak için alkali aktivatör ile uçucu kül ve yüksek fırın cürufu kullanılarak geopolimer hamuru elde edilmiştir. Deneysel çalışmaların ilk aşamasında, oluşturulan geçirimli kazıkların basınç dayanımları belirlenmiş, su emme kapasiteleri ve ultrasonik darbe hızları ölçülmüştür. Daha sonrasında, kazıklar, zayıf bir zemine yerleştirilerek yük-deformasyon davranışları araştırılmıştır. Çalışma kapsamında elde edilen sonuçlar değerlendirildiğinde, geçirimli beton ve geopolimer kazıkların güçlendirilmemiş zeminin taşıma gücünü önemli ölçüde arttırdığı bulunmuştur. Güçlendirilmemiş zemin ile kıyaslandığında, doğal agrega kullanımında geçirimli geopolimer kazık ile 3 kat; inşaat yıkıntı atığı agrega kullanımında ise geçirimli beton kazık ile 2 kat daha fazla taşıma kapasitesi elde edilmiştir. İnşaat yıkıntı atığı agregaları su emme kapasitesini arttırırken, doğal agrega kullanımı ultrasonik darbe hızını arttırmıştır. Taşıma kapasitesi ihtiyacı daha düşük projelerde, inşaat yıkıntı atığı agregaları ile geçirimli geopolimer kazıkların kullanılması, molozların ve üretim atığı olan öncülerin değerlendirilmesini sağlayabilecektir. Özellikle afet sonrası ortaya çıkan atıkların dönüştürülmesi/değerlendirilmesi bölgenin dönüşümü ve insanların sağlığı için hayati önem taşımaktadır.

Etik Beyan

Hazırlanan makalede etik kurul izni alınmasına gerek yoktur. Hazırlanan makalede herhangi bir kişi/kurum ile çıkar çatışması bulunmamaktadır.

Kaynakça

  • [1] T. Sarici and R. T. Ozcan, “Interpretation of geotechnical risk maps for Malatya province in terms of earthquake sequence on February 6, 2023,” Environ. Earth Sci., vol. 84, no. 3, p. 91, 2025.
  • [2] A. Demir and B. Ok, “Uplift response of multi-plate helical anchors in cohesive soil,” Geomech. Eng., vol. 8, no. 4, 2015.
  • [3] R. S. V. Rashma, B. R. Jayalekshmi, and R. Shivashankar, “Liquefaction mitigation potential of improved ground using pervious concrete columns,” Indian Geotech. J., vol. 52, no. 1, pp. 205–226, 2022.
  • [4] M. T. Suleiman, L. Ni, and A. Raich, “Development of pervious concrete pile ground-improvement alternative and behavior under vertical loading,” J. Geotech. Geoenviron. Eng., vol. 140, no. 7, p. 04014035, 2014.
  • [5] T. Munaga, M. M. Khan, and K. K. Gonavaram, “Axial and lateral loading behaviour of pervious concrete pile,” Indian Geotech. J., vol. 50, no. 3, pp. 505–513, 2020.
  • [6] H. Xia, G. Du, J. Cai, and C. Sun, “Model tests on the bearing capacity of pervious concrete piles in silt and sand,” Geomech. Eng., vol. 38, no. 1, pp. 79–91, 2024.
  • [7] F. Xu et al., “Influence of aggregate reinforcement treatment on the performance of geopolymer recycled aggregate permeable concrete: From experimental studies to PFC 3D simulations,” Constr. Build. Mater., vol. 354, p. 129222, 2022.
  • [8] M. Muthu and Ł. Sadowski, “Performance of permeable concrete mixes based on cement and geopolymer in aggressive aqueous environments,” J. Build. Eng., vol. 76, p. 107143, 2023.
  • [9] T. Sarici and M. Ozcan, “Using geopolymer coated and uncoated geotextile as a hybrid method to improve uplift capacity of screw piles in cohesionless soil,” Alexandria Eng. J., vol. 105, pp. 666–681, 2024.
  • [10] A. Yolcu, M. B. Karakoç, E. Ekinci, A. Özcan, and M. A. Sağır, “Effect of binder dosage and the use of waste rubber fiber on the mechanical and durability performance of geopolymer concrete,” J. Build. Eng., vol. 61, p. 105162, 2022.
  • [11] S. Gupta, A. GuhaRay, A. Kar, and V. P. Komaravolu, “Performance of alkali-activated binder-treated jute geotextile as reinforcement for subgrade stabilization,” Int. J. Geotech. Eng., 2021.
  • [12] S. Parathi, P. Nagarajan, and S. A. Pallikkara, “Ecofriendly geopolymer concrete: A comprehensive review,” Clean Technol. Environ. Policy, vol. 23, pp. 1701–1713, 2021.
  • [13] A. Vásquez, V. Cárdenas, R. A. Robayo, and R. M. De Gutiérrez, “Geopolymer based on concrete demolition waste,” Adv. Powder Technol., vol. 27, no. 4, pp. 1173–1179, 2016.
  • [14] S. Dadsetan, H. Siad, M. Lachemi, and M. Sahmaran, “Construction and demolition waste in geopolymer concrete technology: a review,” Mag. Concr. Res., vol. 71, no. 23, pp. 1232–1252, 2019.
  • [15] O. Youssf, D. Safaa Eldin, and A. M. Tahwia, “Eco-Friendly High-Strength Geopolymer Mortar from Construction and Demolition Wastes,” Infrastructures, vol. 10, no. 4, p. 76, 2025.
  • [16] Y. R. V., S. Ganesh Kumar, and G. Santha Kumar, “Sustainable pervious concrete pile for liquefaction and reliquefaction mitigation,” Géotech. Lett., vol. 15, no. 1, pp. 32–37, 2025.
  • [17] G. Doğdu ve S. N. Alkan, “Deprem Sonrası Oluşan İnşaat ve Yıkıntı Atıklarının Değerlendirilmesi: 6 Şubat 2023 Kahramanmaraş Depremleri.” Artvin Çoruh Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 1(1), 38-50, 2023.
  • [18] A. Ahmad, U. Khalid, Z. U. Rehman, and M. J. Iqbal, “Reclaimed brick masonry waste recycling in macro–micro amelioration of cemented clayey soil: an eco-friendly construction waste solution,” J. Mater. Cycles Waste Manag., vol. 27, pp. 1–22, 2025.
  • [19] T. Sarici, T. Geckil, B. Ok, and H. S. Aksoy, “An investigation of the usability of alkali-activated blast furnace slag-additive construction demolition waste as filling material,” Materials, vol. 18, no. 2, p. 398, 2025.
  • [20] M. Hussain, H. Zmamou, A. Provost, P. A. H. Romero, A. Mahieu, N. Leblanc, and A. Kane et. al., “Stabilization and recycling of sand in pedestrian walkways,” Buildings, vol. 14, no. 1, p. 205, 2024.
  • [21] T. Sarici, “Puzolan ile güçlendirilmiş inşaat ve yıkıntı atıklarının granüler dolgu olarak kullanılabilirliğinin değerlendirilmesi,” Ph.D. dissertation, Dept. of Civil Eng., İnönü Univ., Malatya, Turkey, 2019.
  • [22] Standard Test Method for Particle-Size Analysis of Soils, ASTM D422–63, ASTM Int’l., 2007.
  • [23] Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate, ASTM D4791-10, ASTM Int’l., 2010.
  • [24] Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine, ASTM C131-06, ASTM Int’l., 2010.
  • [25] Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM D854-02, ASTM Int’l., 2002.
  • [26] Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM C127-24, ASTM Int’l., 2024.
  • [27] Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, ASTM D4254, ASTM Int’l., 2017.
  • [28] Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM D698-12, ASTM Int’l., 2021.
  • [29] Ö. Çetkin, “Zemin stabilizasyonunun karayolu üstyapı kalınlığına ve maliyetine etkisi,” M.S. thesis, Dept. of Civil Eng., İnönü Univ., Malatya, Turkey, 2022.
  • [30] Standard Test Method for Pulse Velocity Through Concrete, ASTM C597–16, ASTM International, 2016.
  • [31] Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System, ASTM-D2487, ASTM Int’l., 2017.
  • [32] K. Terzaghi and R. B. Peck, “Soil Mechanics in Engineering Practice”, 2nd edition, Wiley Publications, New York, 1967.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Geoteknik Mühendisliği, İnşaat Mühendisliğinde Zemin Mekaniği
Bölüm Makaleler
Yazarlar

Talha Sarıcı 0000-0001-8488-5851

Mustafa Özcan 0000-0001-5745-8694

Rüçhan Enes Korkmaz 0009-0008-7504-774X

Erken Görünüm Tarihi 30 Eylül 2025
Yayımlanma Tarihi 10 Ekim 2025
Gönderilme Tarihi 21 Mayıs 2025
Kabul Tarihi 29 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

IEEE T. Sarıcı, M. Özcan, ve R. E. Korkmaz, “Zayıf bir zeminin ıslahı için oluşturulan geçirimli kazıklarda farklı agrega ve bağlayıcı kullanımının etkisinin araştırılması”, DÜMF MD, c. 16, sy. 3, ss. 825–832, 2025, doi: 10.24012/dumf.1702843.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456