Derleme
BibTex RIS Kaynak Göster

Et Teknolojisinde Alternatif Isıtma Yöntemleri

Yıl 2018, , 656 - 670, 31.05.2018
https://doi.org/10.31202/ecjse.403806

Öz

Et, kimyasal bileşimi nedeniyle hızla bozulabilen bir gıdadır. Bu nedenle
etin muhafazası için çeşitli yöntemler kullanılmaktadır. Haşlama, kavurma gibi
geleneksel ısıtma yöntemleri, gıdaların raf ömrünün uzatılmasını ve mikrobiyal
açıdan gıda güvenliğini sağlamaktadır. Ancak et ve et ürünlerinin besin
değerinde ve duyusal niteliklerinde kayıplar meydana gelmektedir. Bunun yanı
sıra geleneksel ısıtma yöntemlerinde işlem süresinin uzun olması nedeniyle
enerji kullanımı fazla olmaktadır. Gıdaların geleneksel yöntemlerle pişirilmesi
sonucunda fiziksel ve kimyasal yapılarında gerçekleşen değişimlerin sebep
olduğu renk, tekstür gibi özelliklerindeki değişimler, ürün kalitesinde
belirleyici rol oynamaktadır. Bu işlemler sırasında gıda kalitesinin bozulması
tüketici kabulünde endişe kaynağıdır. Tüketici memnuniyetini sağlamak amacıyla
bilim insanları daha güvenli ve besleyici gıda ürünleri üretmek için çeşitli
gıda işleme teknolojilerini araştırmaktadır. Bu teknolojiler arasında son yıllarda
ortaya çıkan alternatif ısıtma yöntemleri olarak kullanılan ohmik ısıtma,
mikrodalga ısıtma, radyo frekans ısıtma ve infrared ısıtma dikkat çekmektedir.
Bunun nedeni, geleneksel yöntemlere kıyasla alternatif yöntemler, gıda
güvenliği açısından yarar sağlarken, işlem sürelerini azaltarak enerji
tüketiminin korunmasını sağlamaktadır. Ayrıca bu teknikler et endüstrisinde
gıdaların besin öğeleri içeriği ile fonksiyonel ve duyusal özelliklerinin
korunmasını da sağlamaktadır. Gelecekte, geliştirilen alternatif ısıtma
tekniklerinin, günümüzde kullanılan geleneksel ısıtma yöntemlerin yerini
alacağı düşünülmektedir.

Kaynakça

  • [1] Aymerich, T., Picouet, P.A., Monfort, J.M., “Decontamination technologies for meat products”, Meat Science, 2008, 78: 114–129s.
  • [2] Shah, M.A., Don Bosco, S.J., Mir, S.A. “Plant extracts as natural antioxidants in meat and meat products”, Meat Science, 2014, 98: 21–33.
  • [3] Demirdöven, A., Baysal, T., “Meyve ve Sebze İşleme Sanayinde Yeni Uygulamalar”, Türkiye 10. Gıda Kongresi, Erzurum, 207-210, (2008).
  • [4] Do, T-T-H., Schnitzer, H., Le, T-H., “A decision support framework considering sustainability for the selection of thermal food processes”, Journal of Cleaner Production, 2014, 78: 112-120.
  • [5] Zell, M., Lyng, G.J., Cronin, A.D., Morgan, J.D., “Ohmic cooking of whole beef muscle- Optimisation of meat preparation”, Meat Science, 2009, 81: 693–698s.
  • [6] İçier, F., “Ohmic Heating of Fluid Foods”, Novel Thermal and Non-Thermal Technologies for Fluid Foods, Academic Press, USA, (2012).
  • [7] Yildiz-Turp, G., Yücel-Şengün, I., Kendirci, P., Icier, F., “Effect of ohmic treatment on quality characteristic of meat: A review”, Meat Science, 2013, 93: 441–448.
  • [8]Pereira, R.N., Vicente, A.A., “Environmental impact of novel thermal and non-thermal Technologies in food processing”, Food Research International, 2010, 43: 1936–1943.
  • [9]Wang, L., “Energy efficiency technologies for sustainable food processing”, Energy Efficiency, 2014, 7: 791-810.
  • [10]Knirsch, M.C., Santos, C.A., Vicente, A.A.M.O.S., Penna, T.C.V., “Ohmic heating -a review”, Trends in Food Science & Technology, 2010, 21: 436-441.
  • [11] Fellows P.J., “Introduction”, Food Processing Technology Principles and Practice, CRC Press, New York, (2009).
  • [12] Misra, N.N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inácio, R.S., Saraiva, J.A., Barba, F.J., “Landmarks in the historical development of twenty first century food processing Technologies”, Food Research International, 2017, 97: 318–339.
  • [13] Domínguez, R., Borrajo, P., Lorenzo, J.M., “The effect of cooking methods on nutritional value of foal meat”, Meat Science, 2015, 43: 61-67.
  • [14] Pathare, P.B., Roskilly, A.P., “Quality and Energy Evaluation in Meat Cooking”, Food Eng Rev, 2016, 8: 435–447.
  • [15]Lorenzo, J.M., Cittadini, A., Munekata, P.E., Domínguez, R., “Physicochemical properties of foal meat as affected by cooking methods”, Meat Science, 2015, 108: 50–54.
  • [16] Türk Gıda Kodeksi, (2012) Türk Gıda Kodeksi Et Ve Et Ürünleri Tebliği, Tebliğ No: 2012/74 http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=9.5.16821&MevzuatIliski=0&sourceXmlSearch=et Son Erişim Tarihi: 26.02.2018
  • [17] Bakalis, S., Cox, P.W., Fryer, P.J., “Modelling particular thermal Technologies”, Thermal technologies in food processing, CRC Press, New York, (2001).
  • [18] Sanguansri, P., “Traditional Thermal Processing”, Reference Module in Food Sciences, 2016, 1-3.
  • [19] Lopes, A.F., Alfaia, C.M.M., Partidário, A.M.C.P.C., Lemos, J.P.C., Prates, J.A.M., “Influence of household cooking methods on amino acids andminerals of Barrosã-PDO veal”, Meat Science, 2015, 99: 38–43.
  • [20] Lee, S.H., Choi, W., Jun, S., “Conventional and Emerging Combination Technologies for Food Processing”, Food Eng Rev, 2016, 8: 414–434.
  • [21] Ling, B., Tang, J., Kong, F., Mitcham E.J., Wang, S., “Kinetics of Food Quality Changes During Thermal Processing: a Review”, Food Bioprocess Technol, 2015, 8: 343–358.
  • [22] Soladoye, O.P., Shand, P., Dugan, M.E.R., Gariépy, C., Aalhus, J.L., Estévez, M., Juárez, M., “Influence of cooking methods and storage time on lipid and protein oxidation and heterocyclic aromatic amines production in bacon”, Food Research International, 2017, 99: 660-669.
  • [23] Calabrò, E., Magazù, S., “Non-Thermal Effects of Microwave Oven Heating on Ground Beef Meat Studied in the Mid- Infrared Region by Fourier Transform Infrared Spectroscopy”, An International Journal for Rapid Communication, 2015, 649-656.
  • [24] Scussat, S., Vaulot, C., Ott, F., Cayot, P., Delmotte, L., Loupiac, C., “The impact of cooking on meat microstructure studied by low field NMR and Neutron Tomography”, Food Structure, 2017, 14: 36-45.
  • [25] Kondjoyan, A., Kohler, A., Realini, C.E., Portanguen, S., Kowalski, R., Clerjon, S., Gatellier, P., Chevolleau, S., Bonny, J-M., Debrauwer, L., “Towards models for the prediction of beef meat quality during cooking”, Meat Science, 2014, 97: 323–331.
  • [26] Domínguez, R., Gómez, M., Fonseca, S., Lorenzo, J.M., “Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat”, Meat Science, 2014, 97: 223–230.
  • [27] Candan, T., Aytunga Bağdatlı, A., “Use of natural antioxidants in poultry meat”, CBÜ Fen Bil. Dergi., 2017, 13 (2): 279-291.
  • [28] Kılıç, B., Şimşek¸ A., Claus, J.R., Atılgan, E., “Melting release point of encapsulated phosphates and heating rate effects on control of lipid oxidation in cooked ground meat”, LWT - Food Science and Technology, 2016, 66: 398-405.
  • [29] Öz, F., Kızıl, M., Zaman, A., Turhan, S., “The effects of direct addition of low and medium molecular weight chitosan on the formation of heterocyclic aromatic amines in beef chop”, LWT- Food Science and Technology, 2016, 65: 861-867.
  • [30] Szterk, A., “Heterocyclic aromatic amines in grilled beef: The influence of free amino acids, nitrogenous bases, nucleosides, protein and glucose on HAA content”, Journal of Food Composition and Analysis, 2015, 40: 39-46.
  • [31] Jiménez-Sánchez, C., Lozano-Sánchez, J., Segura-Carretero, A., Fernández-Gutiérrez, A., “Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications”, Critical Reviews In Food Science And Nutrition, 2017, 57 (3), 501-523.
  • [32] Cokgezme, O.F., Sabanci, S., Cevik, M., Yildiz, H., Icier, F., “Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system”, Journal of Food Engineering, 2017, 207: 1-9.
  • [33] Sarang, S., Sastry, S.K., ve Knipe, L., “Electrical conductivity of fruits and meats during ohmic heating”, Journal of Food Engineering, 2008, 87: 351–356s.
  • [34] Zhu, S.M., Zareifard, M.R., Chen, C.R., Marcotte, M., Grabowski, S., “Electrical conductivity of particle–fluid mixtures in ohmic heating: Measurement and simulation”, Food Research International, 2010, 43: 1666–1672.
  • [35] Sarkis, J.R., Mercali, G.D., Tessaro, I.C., Marczak, L.D.F., “Evaluation of key parameters during construction and operation of an ohmic heating apparatus” Innovative Food Science and Emerging Technologies, 2013, 18: 145–154.
  • [36] Sman, R.G.M., “Model for electrical conductivity of muscle meat during Ohmic heating”, Journal of Food Engineering, 2017, 208: 37-47.
  • [37] Dai, Y., Miao, J., Yuan, S-Z., Liu, Y., Li, X-M., Dai, R-T., “Colour and sarcoplasmic protein evaluation of pork following water bath and ohmic cooking”, Meat Science, 2013 93: 898-905.
  • [38] Bozkurt, H., İçier, F., “Ohmic cooking of ground beef: Effects on quality”, Journal of Food Engineering, 2010, 96: 481–490.
  • [39] Engchuan, W., Jittanit, W., Garnjanagoonchorn, W., “The ohmic heating of meat ball: Modeling and quality determination”, Innovative Food Science and Emerging Technologies, 2014, 23: 121–130.
  • [40] Zell, M., Lyng, J.G., Morgan, D.J., Cronin, D.A., “Quality evaluation of an ohmically cooked ham product”, Food Bioprocess Technol, 2012, 5: 265–272.
  • [41] Yildiz-Turp, G., “Effects of four different cooking methods on some quality characteristics of low fat Inegol meatball enriched with flaxseed flour”, Meat Science, 2016, 121: 40-46.
  • [42] İçier, F., Yücel-Şengün, İ., Yildiz-Turp, G., Arserim, E.H., “Effects of process variables on some quality properties of meatballs semi-cooked in a continuous type ohmic cooking system”, Meat Science, 2014, 96: 1345–1354.
  • [43] Yücel-Şengün, İ., Yildiz-Turp, G., İçier, F., Kendirci, P., Kor, G., “Effects of ohmic heating for pre-cooking of meatballs on some quality and safety attributes”, LWT- Food Science and Technology, 2014, 55: 232-239.
  • [44] Wang, R., Farid, M.M., “Corrosion and health aspects in ohmic cooking of beef meat patties”, Journal of Food Engineering, 2015, 146: 17–22.
  • [45] Balpetek, D., Gürbüz, Ü., “Application of Ohmic Heating System in Meat Thawing”, Procedia - Social and Behavioral Sciences, 2015, 195: 2822–2828.
  • [46] İçier, F., Turgay-Izzetoglu, G., Bozkurt, H., ve Ober, A., “Effects of ohmic thawing on histological and textural properties of beef cuts”, Journal of Food Engineering, 2010, 99: 360–365.
  • [47] Kaur, N., Singh, A.K., “Ohmic Heating: Concept and Applications-A Review”, Critical Reviews in Food Science and Nutrition, 2016, 2338-2351.
  • [48] Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K-H., Knorr, D., Vogel, R.F., Bandick, N., Kulling, S., Heinz, V., Steinberg, P., “Opinion on the use of ohmic heating for the treatment of foods”, Trends in Food Science & Technology, 2016, 55: 84-97.
  • [49] Bozkır, H., Baysal, T., Ergün, A.R., “Gıda Endüstrisinde Uygulanan Yeni Çözündürme Teknikleri”, Akademik Gıda, 2014, 12 (3): 38-44.
  • [50] Guo, Q., Sun, D-W., Cheng, J-H., Han, Z., “Microwave processing techniques and their recent applications in the food industry”, Trends in Food Science & Technology, 2017, 67: 236-247.
  • [51] Santos, T., Valente, M.A., Monteiro, J., Sousa, J., Costa, L.C., “Electromagnetic and thermal history during microwave heating”, Applied Thermal Engineering, 2011, 31: 3255-3261.
  • [52] Ekezie, F-G.C., Sun, D-W., Han, Z., Cheng, J-H., “Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments”, Trends in Food Science & Technology, 2017, 67: 58-69.
  • [53] Anwar, J., Shafique, U., Waheed-uz-Zaman, Rehman, R., Salman, M., Dar, A., Anzano, J.M., Ashraf, U., Ashraf, S., “Microwave chemistry: Effect of ions on dielectric heating in microwave ovens”, Arabian Journal of Chemistry, 2015, 8: 100-104.
  • [54] Song, W-J., Kang, D-H., “Influence of water activity on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in peanut butter by microwave heating”, Food Microbiology, 2016, 60: 104-111.
  • [55] Barbosa-Cánovas, G.V., Ilce Medina-Meza, İ., Candoğan, K., Bermúdez-Aguirre, D., “Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products”, Meat Science, 2014, 98: 420–434.
  • [56] İbicek, T., “Alternatif Pişirme Yöntemlerinin Araştırılması ve Yeni Hibrid Yöntem Oluşturulması”, (Yüksek Lisans Tezi), İstanbul Üniversitesi ve Fen Bilimleri Enstitüsü, (2006).
  • [57] Konak, Ü.İ., Certel, M., Helhel, S., “Gıda Sanayisinde Mikrodalga Uygulamaları”, Gıda Teknolojileri Elektronik Dergisi, 2009, 4 (3): 20-31.
  • [58] Yarmand, M.S., Homayouni, A., Nikmaram, P., Djomeh, Z.E., “Microstructural and mechanical properties of camel longissimus dorsi muscle during roasting, braising and microwave heating”, Meat Science, 2013, 95: 419–424.
  • [59] Półtorak, A., Wyrwisz, J., Moczkowska, M., Marcinkowska-Lesiak, M., Stelmasiak, A., Rafalska, U., Wierzbicka, A., Sun, D-W., “Microwave vs. convection heating of bovine Gluteus Medius muscle: impact on selected physical properties of final product and cooking yield”, International Journal of Food Science and Technology, 2015, 50: 958–965.
  • [60] Jouquand, C., Tessier, F.J., Bernard, J., Marier, D., Woodward, K., Jacolot, P., Gadonna-Widehem, P., Laguerre, J-C., “Optimization of microwave cooking of beef burgundy in terms of nutritional and organoleptic properties”, LWT- Food Science and Technology, 2015, 60: 271-276.
  • [61] Peiretti, P.G., Medana, C., Visentin, S., Dal-Bello, F., Meineri, G., “Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat”, Food Chemistry, 2012, 132: 80–85.
  • [62] Chang, H.J., Xu, X.L., Li, C.B., Huang, M., Liu, D.Y., Zhou, G.H., “A Comparison of Heat-Induced Changes of Intramuscular Connective Tissue and Collagen of Beef Semitendinosus Muscle During Water Bath And Microwave Heating”, Journal of Food Process Engineering, 2011, 34: 2233–2250.
  • [63] Rowley, A.T., EA Technology Ltd., Chester., “Radio frequency heating” Thermal technologies in food processing, CRC Press, New York, (2001).
  • [64] Ferrari-John, R.S., Katrib, J., Palade, P., Batchelor, A.R., Dodds, C., Kingman, S.W., “A Tool for Predicting Heating Uniformity in Industrial Radio Frequency Processing”, Food Bioprocess Technol, 2016, 9: 1865–1873.
  • [65] Jiao, Y., Shi, H., Tang, J., Li, F., Wang, S., “Improvement of radio frequency (RF) heating uniformity on low moisture foods with Polyetherimide (PEI) blocks”, Food Research International, 2015, 74: 106-114.
  • [66] Zhang, L., Lyng, G.J., Brunton, P.N., “The effect of fat, water and salt on the thermal and dielectric properties of meat batter and its temperature following microwave or radio frequency heating”, Journal of Food Engineering, 2007, 80: 142–151.
  • [67] Uyar, R., Erdogdu, F., Sarghinic, F., Marra, F., “Computer simulation of radio-frequency heatingapplied to block-shaped foods: Analysis on the roleof geometrical parameters”, Food and Bioproducts Processing, 2016, 98: 310-319.
  • [68] Schlisselberg, D.B., Kler, E., Kalily, E., Kisluk, G., Karniel, O., Yaron, S., “Inactivation of foodborne pathogens in ground beef by cooking with highly controlled radio frequency energy”, International Journal of Food Microbiology, 2013, 160: 219–226s.
  • [69] Zhang, S., Huang, Z., Wang, S., “Improvement of radio frequency (RF) heating uniformity for peanuts with a new strategy using computational modeling”, Innovative Food Science and Emerging Technologies, 2017, 41: 79-89.
  • [70] Rincon, A.M., Singh, R.K., Stelzleni, A.M., “Effects of endpoint temperature and thickness on quality of whole muscle non-intact steaks cooked in a Radio Frequency oven”, LWT- Food Science and Technology, 2015, 64: 1323-1328.
  • [71] Uyar, R., Erdogdu, F., Marra, F., “Effect of load volume on power absorption and temperature evolution during radio-frequency heating of meat cubes: A computational study”, Food and Bioproducts Processing, 2014, 92: 243–251.
  • [72] Nagaraj, G., Singh, R., Hung, Y.C., Mohan, A., “Effect of radio-frequency on heating characteristics of beef homogenate blends, LWT- Food Science and Technology, 2015, 60: 372-376.
  • [73] Rincon, A.M., Singh, R.K., “Inactivation of Shiga toxin-producing and nonpathogenic Escherichia coli in non-intact steaks cooked in a radio frequency oven”, Food Control, 2016, 62: 390-396.
  • [74] Laycock, L., Piyasena, P., Mittal, G.S., “Radio frequency cooking of ground, comminuted and muscle meat products”, Meat Science, 2003, 65: 959–965.
  • [75] Troy, D.J., Ojha, K.S., Kerry, J.P., Tiwari, B.K., “Sustainable and consumer-friendly emerging technologies for application within the meat industry: An overview”, Meat Science, 2016, 120: 2–9.
  • [76] Fellows P.J. “Dielectric, ohmic and infrared heating”, Food Processing Technology Principles and Practice, CRC Press, New York, (2009).
  • [77] Skjoldebrand, C., ABB Automation Systems., “Infrared heating”, Thermal technologies in food processing, CRC Press, New York, (2001).
  • [78] Wang, B., Venkitasamy, C., Zhang, F., Zhao, L., Khir, R., Pan, Z., “Feasibility of jujube peeling using novel infrared radiation heating technology”, LWT- Food Science and Technology, 2016, 69: 458-467.
  • [79] Kendirci, P., Icier, F., Kor, G., Altug-Onogur, T., “Influence of infrared final cooking on polycyclic aromatic hydrocarbon formation in ohmically pre-cooked beef meatballs”, Meat Science, 2014, 97: 123–129.
  • [80] Yücel-Sengun, I., Icier, F., Kor, G., “Effects Of Combined Ohmic–Infrared Cooking Treatment on Microbiological Inactivation of Meatballs”, Journal of Food Process Engineering, 2015, 40: 1745-4530.
  • [81] Yildiz Turp, G., Filiz Icier, F., Kor, G., “Influence of infrared final cooking on color, texture and cooking characteristics of ohmically pre-cooked meatball”, Meat Science, 2016, 114: 46–53.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm IAREC 2018
Yazarlar

Tuba Candan 0000-0002-7836-9145

Aytunga Bağdatlı 0000-0002-6080-7901

Yayımlanma Tarihi 31 Mayıs 2018
Gönderilme Tarihi 9 Mart 2018
Kabul Tarihi 14 Mart 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

IEEE T. Candan ve A. Bağdatlı, “Et Teknolojisinde Alternatif Isıtma Yöntemleri”, ECJSE, c. 5, sy. 2, ss. 656–670, 2018, doi: 10.31202/ecjse.403806.