Araştırma Makalesi
BibTex RIS Kaynak Göster

Kayan Kip Denetimli Verimli Bir Güneş-Hidrojen DA-DA Azaltan Çevirici Sistemi

Yıl 2019, , 558 - 570, 30.09.2019
https://doi.org/10.31202/ecjse.558383

Öz

Bu makale güneş enerjisinden daha verimli yararlanmak için iki farklı senaryo üzerine odaklanmaktadır. Bunlardan biri fotovoltaik evler ve enerjilerini hidrojen olarak depolamak, diğeri fotovoltaik otomobiller ve enerjilerini hidrojen olarak depolamaktır. Fotovoltaik kaynaklı bu iki senaryodaki ortak nokta, hidrojen enerjisinin daha verimli bir şekilde dönüştürülmesi ve depolanmasıdır. Doğru akım (DA) fotovoltaik enerjisi, elektroliz işlemiyle hidrojen üretmek için DA-DA dönüştürücü kullanılarak istenen voltaj seviyesine dönüştürülür. Hidrojen üretimi için elektroliz yükü, özellikle düşük voltaj ve yüksek akımlara ihtiyaç duyar. Bu şartları sağlamak için dönüştürücü hassas bir şekilde tasarlanmalı ve kontrol edilmelidir. Bu amaçla, kayan mod kontrolörü bu çalışmada bir çözüm olarak önerilmiştir. Bu kontrol cihazı iç döngüdeki endüktans akımını kullanır ve normal ve anormal koşullar altında dönüştürücü için güçlü bir kontrol sağlar. Elektroliz yükü için fotovoltaik kaynaklı DC-DC konvertör, MATLAB / Simulink yazılımında kayan kip modu kontrolörü kullanılarak daha ayrıntılı olarak simüle edilmiştir.

Kaynakça

  • [1] M. Melaina, and J. Eichman, “Hydrogen Energy Storage: Grid and Transportation Services”, Technical Report NREL/TP-5400-62518, http://www.nrel.gov/docs/fy15osti/62518.pdf, 2015.
  • [2] I. P. Jain, "Hydrogen the fuel for 21st century", International Journal of Hydrogen Energy, Vol. 34. 17, 2009, pp.7368-7378.
  • [3] N. L. Panwar, S. C. Kaushik, and S. Kothari, "Role of renewable energy sources in environmental protection: a review", Renewable and Sustainable Energy Reviews, Vol. 15.3, 2011, pp.1513-1524.
  • [4] M.E. Şahin, H.İ. Okumuş, “Physical Structure, Electrical Design, Mathematical Modeling and Simulation of Solar Cell Modules”, Turkish Journal of Electromechanics & Energy Vol. 1.1, 2015, p. 1-8.
  • [5] M. Wild, et al. "From dimming to brightening: Decadal changes in solar radiation at Earth's surface", Science, vol. 308.5723, 2005, p. 847-850.
  • [6] C-J. Winter, "Hydrogen energy—abundant, efficient, clean: a debate over the energy-system-of-change", International Journal of Hydrogen Energy, Vol. 34.14, 2009, p .1-52.
  • [7] F. Laurencelle, R Chahine, J. Hamelin, B. Agbossou, M.Fournier, T.K. Bose, “Characterization of Ballard MK5-E proton Exchange membrane fuel cell stack”, J. Fuel Cells e Fundam Syst. 2001, p. 66-71.
  • [8] F. H. Fahmy & Z. S. Abdel-Rehim, Hydrogen gas production and utilization as electricity using a renewable energy source, Energy sources, 21(7), 1999, p. 629-641.
  • [9] O. Khaselev, A. Bansal, and J. A. Turner, "High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production", International Journal of Hydrogen Energy Vol. 26.2, 2001, p.127-132.
  • [10] M. E Şahin, H. İ Okumuş, and M. T. Aydemir, "Implementation of an electrolysis system with DC/DC synchronous buck converter", International Journal of hydrogen energy, Vol. 39.13, 2014, p. 6802-6812.
  • [11] A. Garrigós, et al., "Combined maximum power point tracking and output current control for a photovoltaic-electrolyser DC/DC converter", International Journal of Hydrogen Energy, Vol. 39.36, 2014, p. 20907-20919.
  • [12] M. E. Sahin, & H. I. Okumus, “Fuzzy logic controlled parallel connected synchronous buck DC-DC converter for water electrolysis”, IETE Journal of Research, Vol.59.3, 2013, p. 280-288.
  • [13] S. C. Tan, Y. M. Lai, C. K. Tse, “General Design Issues of Sliding-Mode Controllers in DC-DC Converters”, IEEE Transactions on Industrial Electronics, vol.55.3, 2008.
  • [14] M. Ahmed, “Sliding Mode Control for Switched Mode Power Supplies”, Doctoral Thesis, Lapeenranta University of Technology, Finland, 2004.
  • [15] P. Mattavelli, L. Ressetto, G. Spiazzi, P. Tenti, “General-purpose sliding-mode controller for DC/DC converter applications”, IEEE Conference Proceedings, 1993, p.609-6015.
  • [16] M. E. Şahin, H. İ. Okumuş, & H. Kahveci, Sliding mode control of PV powered DC/DC Buck-Boost converter with digital signal processor, In Power Electronics and Applications (EPE'15 ECCE-Europe), 2015 17th European Conference on (pp. 1-8). IEEE, September, 2015.
  • [17] S.A. Sherif, F. Barbir, N. Veziroglu, “Towards a hydrogen economy”, The Electricity Journal, 2005, p.62-76.
  • [18] M. Gregorio, and V-S. Teresa, "Towards the hydrogen economy?", International Journal of Hydrogen Energy, vol. 32.12, 2007, 1625-1637.
  • [19] M. Balat, & N. Ozdemir, New and renewable hydrogen production processes, Energy sources, vol. 27.13, 2005, p. 1285-1298.
  • [20] The Solar Hydrogen Cycle, Schatz Energy Research Centre, http://www.schatzlab.org/projects/hydrogen/solarh2cycle.html, Available 16.02.2017.
  • [21] Walters G., “The car that runs on FRESH AIR”, Mail-Online, 9 May 2015,http://www.dailymail.co.uk/sciencetech/article-3074298, Available 16.02.2017.
  • [22] 100W PV Module Datasheet, Internet: http://www.solartechpower.com/SPM100PN.html, Solartech Power Inc., SPM 100P-TS-N MODULE, 1 March 2016.
  • [23] R. W. Erickson, and D. Maksimovic, “Chapter 8: Converter Transfer Functions”, Fundamentals of power electronics, Springer Science & Business Media, 2007.
  • [24] N. Mohan, and T. M. Undeland, Power electronics: converters, applications, and design, John Wiley & Sons, 2007.
  • [25] M. H. Rashid, Power electronics handbook: devices, circuits, and applications, Academic Press, 2010.
  • [26] M.,Smaoui, and L. Krichen, "Design and energy control of stand-alone hybrid wind/photovoltaic/fuel cell power system supplying a desalination unit", Journal of Renewable and Sustainable Energy, Vol. 6.4, 2014, p. 043111.
  • [27] P. Nikolaidis, and A. Poullikkas. "A comparative overview of hydrogen production processes", Renewable and sustainable energy reviews, Vol. 67, 2017, p. 597-611.
  • [28] P. Hollmuller, et al. "Evaluation of a 5 kW p photovoltaic hydrogen production and storage installation for a residential home in Switzerland", International Journal of Hydrogen Energy, Vol. 25.2, 2000, p. 97-109.
  • [29] N., Meng, et al. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production", Renewable and Sustainable Energy Reviews, Vol. 11.3, 2007, p. 401-425.
  • [30] Y. Kar, Utility-scale solar photovoltaic hybrid system and performance analysis for eco-friendly electric vehicle charging and sustainable home, Energy Sources, Part A Recovery, Utilization, and Environmental Effects, 2018, xx.
  • [31] M. Y. Lin, L. W. Hourng, & C. H. Wu, The effectiveness of a magnetic field in increasing hydrogen production by water electrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 39.2, 2017, p.140-147.
  • [32] M. Shen, et al. "A concise model for evaluating water electrolysis", International Journal of Hydrogen Energy, vol. 36.22, 2011, p.14335-14341.
  • [33] H. K. Abdel-Aal, & M.A. Mohamed, Potentials of storing solar energy in the form of hydrogen for Egypt, Energy sources, Vol. 11(2), 1989, 95-103.
  • [34] T. N. Veziroğlu, S. Şahin, 21st Century’s energy: Hydrogen energy system, Energy Conversion, and Management, vol. 49.7, 2008, 1820-1831.

An Efficient Solar-Hydrogen DC-DC Buck Converter System with Sliding Mode Control

Yıl 2019, , 558 - 570, 30.09.2019
https://doi.org/10.31202/ecjse.558383

Öz

This paper focuses on two different scenarios to benefit from solar energy more efficiently. One of them is photovoltaic houses and storing their energy as hydrogen, the other one is photovoltaic cars and storing their energy as hydrogen. The common point in these two photovoltaic sourced scenarios is convert and storage of the hydrogen energy more efficiently. Photovoltaic energy is converted to the desired voltage level using the DC-DC buck converter for generating hydrogen with electrolysis process. The electrolysis load for hydrogen production needs low voltage and high currents especially. To supply these conditions the converter must be designed and controlled sensitively. For this aim, the sliding mode controller is proposed as a solution in this study. The photovoltaic powered DC-DC buck converter for electrolysis load was simulated in MATLAB/ Simulink software more detailed using the sliding mode controller.

Kaynakça

  • [1] M. Melaina, and J. Eichman, “Hydrogen Energy Storage: Grid and Transportation Services”, Technical Report NREL/TP-5400-62518, http://www.nrel.gov/docs/fy15osti/62518.pdf, 2015.
  • [2] I. P. Jain, "Hydrogen the fuel for 21st century", International Journal of Hydrogen Energy, Vol. 34. 17, 2009, pp.7368-7378.
  • [3] N. L. Panwar, S. C. Kaushik, and S. Kothari, "Role of renewable energy sources in environmental protection: a review", Renewable and Sustainable Energy Reviews, Vol. 15.3, 2011, pp.1513-1524.
  • [4] M.E. Şahin, H.İ. Okumuş, “Physical Structure, Electrical Design, Mathematical Modeling and Simulation of Solar Cell Modules”, Turkish Journal of Electromechanics & Energy Vol. 1.1, 2015, p. 1-8.
  • [5] M. Wild, et al. "From dimming to brightening: Decadal changes in solar radiation at Earth's surface", Science, vol. 308.5723, 2005, p. 847-850.
  • [6] C-J. Winter, "Hydrogen energy—abundant, efficient, clean: a debate over the energy-system-of-change", International Journal of Hydrogen Energy, Vol. 34.14, 2009, p .1-52.
  • [7] F. Laurencelle, R Chahine, J. Hamelin, B. Agbossou, M.Fournier, T.K. Bose, “Characterization of Ballard MK5-E proton Exchange membrane fuel cell stack”, J. Fuel Cells e Fundam Syst. 2001, p. 66-71.
  • [8] F. H. Fahmy & Z. S. Abdel-Rehim, Hydrogen gas production and utilization as electricity using a renewable energy source, Energy sources, 21(7), 1999, p. 629-641.
  • [9] O. Khaselev, A. Bansal, and J. A. Turner, "High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production", International Journal of Hydrogen Energy Vol. 26.2, 2001, p.127-132.
  • [10] M. E Şahin, H. İ Okumuş, and M. T. Aydemir, "Implementation of an electrolysis system with DC/DC synchronous buck converter", International Journal of hydrogen energy, Vol. 39.13, 2014, p. 6802-6812.
  • [11] A. Garrigós, et al., "Combined maximum power point tracking and output current control for a photovoltaic-electrolyser DC/DC converter", International Journal of Hydrogen Energy, Vol. 39.36, 2014, p. 20907-20919.
  • [12] M. E. Sahin, & H. I. Okumus, “Fuzzy logic controlled parallel connected synchronous buck DC-DC converter for water electrolysis”, IETE Journal of Research, Vol.59.3, 2013, p. 280-288.
  • [13] S. C. Tan, Y. M. Lai, C. K. Tse, “General Design Issues of Sliding-Mode Controllers in DC-DC Converters”, IEEE Transactions on Industrial Electronics, vol.55.3, 2008.
  • [14] M. Ahmed, “Sliding Mode Control for Switched Mode Power Supplies”, Doctoral Thesis, Lapeenranta University of Technology, Finland, 2004.
  • [15] P. Mattavelli, L. Ressetto, G. Spiazzi, P. Tenti, “General-purpose sliding-mode controller for DC/DC converter applications”, IEEE Conference Proceedings, 1993, p.609-6015.
  • [16] M. E. Şahin, H. İ. Okumuş, & H. Kahveci, Sliding mode control of PV powered DC/DC Buck-Boost converter with digital signal processor, In Power Electronics and Applications (EPE'15 ECCE-Europe), 2015 17th European Conference on (pp. 1-8). IEEE, September, 2015.
  • [17] S.A. Sherif, F. Barbir, N. Veziroglu, “Towards a hydrogen economy”, The Electricity Journal, 2005, p.62-76.
  • [18] M. Gregorio, and V-S. Teresa, "Towards the hydrogen economy?", International Journal of Hydrogen Energy, vol. 32.12, 2007, 1625-1637.
  • [19] M. Balat, & N. Ozdemir, New and renewable hydrogen production processes, Energy sources, vol. 27.13, 2005, p. 1285-1298.
  • [20] The Solar Hydrogen Cycle, Schatz Energy Research Centre, http://www.schatzlab.org/projects/hydrogen/solarh2cycle.html, Available 16.02.2017.
  • [21] Walters G., “The car that runs on FRESH AIR”, Mail-Online, 9 May 2015,http://www.dailymail.co.uk/sciencetech/article-3074298, Available 16.02.2017.
  • [22] 100W PV Module Datasheet, Internet: http://www.solartechpower.com/SPM100PN.html, Solartech Power Inc., SPM 100P-TS-N MODULE, 1 March 2016.
  • [23] R. W. Erickson, and D. Maksimovic, “Chapter 8: Converter Transfer Functions”, Fundamentals of power electronics, Springer Science & Business Media, 2007.
  • [24] N. Mohan, and T. M. Undeland, Power electronics: converters, applications, and design, John Wiley & Sons, 2007.
  • [25] M. H. Rashid, Power electronics handbook: devices, circuits, and applications, Academic Press, 2010.
  • [26] M.,Smaoui, and L. Krichen, "Design and energy control of stand-alone hybrid wind/photovoltaic/fuel cell power system supplying a desalination unit", Journal of Renewable and Sustainable Energy, Vol. 6.4, 2014, p. 043111.
  • [27] P. Nikolaidis, and A. Poullikkas. "A comparative overview of hydrogen production processes", Renewable and sustainable energy reviews, Vol. 67, 2017, p. 597-611.
  • [28] P. Hollmuller, et al. "Evaluation of a 5 kW p photovoltaic hydrogen production and storage installation for a residential home in Switzerland", International Journal of Hydrogen Energy, Vol. 25.2, 2000, p. 97-109.
  • [29] N., Meng, et al. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production", Renewable and Sustainable Energy Reviews, Vol. 11.3, 2007, p. 401-425.
  • [30] Y. Kar, Utility-scale solar photovoltaic hybrid system and performance analysis for eco-friendly electric vehicle charging and sustainable home, Energy Sources, Part A Recovery, Utilization, and Environmental Effects, 2018, xx.
  • [31] M. Y. Lin, L. W. Hourng, & C. H. Wu, The effectiveness of a magnetic field in increasing hydrogen production by water electrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 39.2, 2017, p.140-147.
  • [32] M. Shen, et al. "A concise model for evaluating water electrolysis", International Journal of Hydrogen Energy, vol. 36.22, 2011, p.14335-14341.
  • [33] H. K. Abdel-Aal, & M.A. Mohamed, Potentials of storing solar energy in the form of hydrogen for Egypt, Energy sources, Vol. 11(2), 1989, 95-103.
  • [34] T. N. Veziroğlu, S. Şahin, 21st Century’s energy: Hydrogen energy system, Energy Conversion, and Management, vol. 49.7, 2008, 1820-1831.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Ergin Şahin 0000-0002-5121-6173

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 26 Nisan 2019
Kabul Tarihi 17 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

IEEE M. E. Şahin, “An Efficient Solar-Hydrogen DC-DC Buck Converter System with Sliding Mode Control”, ECJSE, c. 6, sy. 3, ss. 558–570, 2019, doi: 10.31202/ecjse.558383.