Araştırma Makalesi
BibTex RIS Kaynak Göster

Ni Tabanlı Bazı Süperalaşımların Foton Etkileşim Özelliklerinin İncelenmesi

Yıl 2021, , 552 - 566, 31.05.2021
https://doi.org/10.31202/ecjse.831869

Öz

Gelişen teknoloji ile sağlık, nükleer santraller, medikal onkoloji, sanayi ve teknoloji, kontak lensler gibi birçok alanda iyonlaştırıcı radyasyonun kullanımı ve bununla birlikte canlıların radyasyona maruz kalma ihtimalleri artmaktadır. Radyasyonun zararlı etkilerinden korunmanın temel unsurlarından bir tanesi zırhlamadır. Bu çalışmada seçilen 14 Ni tabanlı süperalaşımın (Nimonic 901, Alloy 10, Hastelloy X, Haynes 242, Incoloy 801, Inconel 706, Nasair 100, PWA 1480, X4, Nominal, H282-B, H282-C, 247, MCrAlYHf) gama ve X-ışını radyasyonu zırhlama yetkinlikleri incelenmiş birbirleriyle karşılaştırılmıştır. Bunun için WinXCOM programı kullanılarak γ ve X- ışını zırhlamada önemli parametreler olan kütle soğurma katsayısı (μρ), yarı kalınlık değeri (HVL), etkin atom numarası (Zeff), elektron yoğunluğu (Nel) 1 keV- 100 GeV enerji aralığında üzerinde çalışılan süperalaşımlar için hesaplanmıştır. Ayrıca foton build-up faktörü zırhlama ve radyasyon doz hesaplamalarında önemli bir parametredir. Bu sebeple süperalaşımların maruz kalma buildup faktörleri (EBF) farklı nüfuz etme derinlikleri için (1-40 mfp) 0,015–15 MeV enerji aralığında elde edildi. Sonuç olarak seçilen numuneler arasından nikel tabanlı X4 ve PWA 1480 süperalaşımları en büyük μρ ve Zeff değerlerine sahipken, en küçük HVL ve EBF değerine sahiptir. Bu durumda tüm enerji bölgeleri dikkate alındığında hesaplanan parametrelerin tamamının numunelerin kimyasal kompozisyonuna bağlı olduğu ve X4 ve PWA1480 süperalaşımlarının Ni tabanlı süperalaşımlar içinde en üstün radyasyon soğurma kabiliyetine sahip olduğu ve hâlihazırda kullanılan birçok zırh malzemesinden üstün radyasyon soğurma kabiliyetinin olduğu söylenebilir.

Kaynakça

  • [1] Akkurt, I., Basyigit, C., Kilincarslan, S., Mavi, B., Akkurt, A., 2006. Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. https://doi.org/10.1016/j.cemconcomp.2005.09.006.
  • [2] Atashi, P., Rahmani, S., Ahadi, B., Rahmati, A., 2018. Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3 for gamma ray shielding application. J. Mater. Sci. Mater. Electron. https://doi.org/10.1007/s10854-018-9344-1.
  • [3] Chamanfar, A., Jahazi, M., Cormier, J., 2015. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. https://doi.org/10.1007/s11661-015-2752-4.
  • [4] Gerward, L., Guilbert, N., Jensen, K.B., Levring, H., 2004. WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. https://doi.org/10.1016/j.radphyschem.2004.04.040.
  • [5] Jovanovic, M. T., Lukic, B., Miskovic, Z., Bobic, I., Cvijovic, I. And Dimcic, B., 2007. Processing and some applications of nickel, cobalt and titanium-based alloys. Association of Metallurgical Engineers of Serbia. 91-106.
  • [6] Kaur, T., Sharma, J., Singh, T., 2019. Review on scope of metallic alloys in gamma rays shield designing. Prog. Nucl. Energy. https://doi.org/10.1016/j.pnucene.2019.01.016.
  • [7] Kavaz, E., Ekinci, N., Tekin, H.O., Sayyed, M.I., Aygün, B., Perişanoğlu, U., 2019a. Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 115, 12–20. https://doi.org/10.1016/j.pnucene.2019.03.029.
  • [8] Kavaz, E., Perişanoğlu, U., Ekinci, N., Özdemır, Y., 2016. Determination of energy absorption and exposure buildup factors by using G-P fitting approximation for radioprotective agents. Int. J. Radiat. Biol. 92. https://doi.org/10.1080/09553002.2016.1175681.
  • [9] Kavaz, E., Tekin, H.O., Agar, O., Altunsoy, E.E., Kilicoglu, O., Kamislioglu, M., Abuzaid, M.M., Sayyed, M.I., 2019b. The Mass stopping power / projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide. Ceram. Int. https://doi.org/10.1016/j.ceramint.2019.05.028.
  • [10] Kavaz, E., Yorgun, N.Y., 2018. Gamma ray buildup factors of lithium borate glasses doped with minerals. J. Alloys Compd. 752, 61–67. https://doi.org/10.1016/j.jallcom.2018.04.106.
  • [11] Levet, A., Kavaz, E., Özdemir, Y., 2020. An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. J. Alloys Compd. 819, 152946. https://doi.org/10.1016/j.jallcom.2019.152946.
  • [12] Manohara, S.R., Hanagodimath, S.M., Gerward, L., 2008. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: Studies of some biological molecules in the energy range 1 keV-20 MeV. Med. Phys. https://doi.org/10.1118/1.2815936.
  • [13] Obaid, S.S., Sayyed, M.I., Gaikwad, D.K., Pawar, P.P., 2018. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. https://doi.org/10.1016/j.radphyschem.2018.02.026.
  • [14] Oluwaseun Azeez, M., Ahmad, S., Al-Dulaijan, S.U., Maslehuddin, M., Abbas Naqvi, A., 2019. Radiation shielding performance of heavy-weight concrete mixtures. Constr. Build. Mater. 224, 284–291. https://doi.org/10.1016/j.conbuildmat.2019.07.077.
  • [15] Pollock, T. M. and Tin, S., 2006. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. Journal of propulsion and power, 22(2), 361-374.
  • [16] Rammah, Y.S., Mahmoud, K.A., Kavaz, E., Kumar, A., El-Agawany, F.I., 2020. The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceram. Int. In Press. https://doi.org/10.1016/j.ceramint.2020.04.018.
  • [17] Reed, R. C., 2006. The Superalloys Fundamentals and Applications. Cambridge University Press, 372, New York.
  • [18] Sayyed, M.I., Mohammed, F.Q., Mahmoud, K.A., Lacomme, E., Kaky, K.M., Khandaker, M.U., Faruque, M.R.I., 2020. Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety. Appl. Sci. https://doi.org/10.3390/app10217680.
  • [19] Segersall, M., 2013. Nickel Based SingleCrystal Superalloys the crystal orientation influence on high temperature properties. Licentiate Thesis, Linköping University Institute of Technology, Linköping, Sweden.
  • [20] Sharma, R., Sharma, J., Singh, T., 2016. Effective Atomic Numbers for Some Alloys at 662 keV Using Gamma Rays Backscattering Technique. Phys. Sci. Int. J. https://doi.org/10.9734/psij/2016/27243.
  • [21] Singh, T., Kaur, A., Sharma, J., Singh, P.S., 2018. Gamma rays’ shielding parameters for some Pb-Cu binary alloys. Eng. Sci. Technol. an Int. J. https://doi.org/10.1016/j.jestch.2018.06.012.
  • [22] Singh, V.P., Badiger, N.M., 2014. Gamma ray and neutron shielding properties of some alloy materials. Ann. Nucl. Energy 64, 301–310. https://doi.org/10.1016/j.anucene.2013.10.003.
  • [23] Sirin, M., 2020. The effect of titanium (Ti) additive on radiation shielding efficiency of Al25Zn alloy. Prog. Nucl. Energy. https://doi.org/10.1016/j.pnucene.2020.103470.
  • [24] Swinehart, D.F., 1962. The Beer-Lambert law. J. Chem. Educ. https://doi.org/10.1021/ed039p333.
  • [25] Yan, G., Yu, W., Shengping, S., 2020. Oxidation protection of enamel coated Ni based superalloys: Microstructure and interfacial reaction. Corros. Sci. https://doi.org/10.1016/j.corsci.2020.108760.
  • [26] Yao, Z.Y., Möncke, D., Kamitsos, E.I., Houizot, P., Célarié, F., Rouxel, T., Wondraczek, L., 2016. Structure and mechanical properties of copper-lead and copper-zinc borate glasses. J. Non. Cryst. Solids. https://doi.org/10.1016/j.jnoncrysol.2015.12.005

Investigation of Photon Interaction Properties of Some Ni-Based Superalloys

Yıl 2021, , 552 - 566, 31.05.2021
https://doi.org/10.31202/ecjse.831869

Öz

With the developing technology, the use of ionizing radiation in many areas such as health, nuclear power plants, medical oncology, industry and technology, contact lenses, and with this, the possibility of exposure to radiation for living creatures increases. One of the basic facts of protection from the harmful effects of radiation is shielding. In this study, gamma and X-ray radiation shielding capabilities of the selected 14 Ni-based superalloys (Nimonic 901, Alloy 10, Hastelloy X, Haynes 242, Incoloy 801, Inconel 706, Nasair 100, PWA 1480, X4, Nominal, H282-B, H282-C, 247, MCrAlYHf) were examined and compared with each other. WinXCOM program is used for this. For this, the mass attenuation coefficient (μρ), half-value thickness layer (HVL), effective atomic number (Zeff), and electron density (Nel) which are important parameters in shielding γ and X- rays, were calculated for the alloys studied in the energy range between 1 keV and 100 GeV In addition, photon build-up factor is an important parameter in shielding and radiation dose calculations. For this reason, the exposure buildup factors (EBF) of Ni-based superalloys were obtained in the energy range of 0.015–15 MeV for different penetration depths (1-40 mfp). As a result, among the selected samples, nickel-based X4 and PWA 1480 superalloys have the largest μρ and Zeff, values, while the smallest HVL and EBF values. In this case, considering all energy regions, all of the calculated parameters depend on the elemental composition of the samples. Accordingly, it can be said that X4, PWA1480 superalloys have the highest radiation absorption capability among Ni-based superalloys and has superior radiation absorption capability than many armor materials currently used.

Kaynakça

  • [1] Akkurt, I., Basyigit, C., Kilincarslan, S., Mavi, B., Akkurt, A., 2006. Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. https://doi.org/10.1016/j.cemconcomp.2005.09.006.
  • [2] Atashi, P., Rahmani, S., Ahadi, B., Rahmati, A., 2018. Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3 for gamma ray shielding application. J. Mater. Sci. Mater. Electron. https://doi.org/10.1007/s10854-018-9344-1.
  • [3] Chamanfar, A., Jahazi, M., Cormier, J., 2015. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. https://doi.org/10.1007/s11661-015-2752-4.
  • [4] Gerward, L., Guilbert, N., Jensen, K.B., Levring, H., 2004. WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. https://doi.org/10.1016/j.radphyschem.2004.04.040.
  • [5] Jovanovic, M. T., Lukic, B., Miskovic, Z., Bobic, I., Cvijovic, I. And Dimcic, B., 2007. Processing and some applications of nickel, cobalt and titanium-based alloys. Association of Metallurgical Engineers of Serbia. 91-106.
  • [6] Kaur, T., Sharma, J., Singh, T., 2019. Review on scope of metallic alloys in gamma rays shield designing. Prog. Nucl. Energy. https://doi.org/10.1016/j.pnucene.2019.01.016.
  • [7] Kavaz, E., Ekinci, N., Tekin, H.O., Sayyed, M.I., Aygün, B., Perişanoğlu, U., 2019a. Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 115, 12–20. https://doi.org/10.1016/j.pnucene.2019.03.029.
  • [8] Kavaz, E., Perişanoğlu, U., Ekinci, N., Özdemır, Y., 2016. Determination of energy absorption and exposure buildup factors by using G-P fitting approximation for radioprotective agents. Int. J. Radiat. Biol. 92. https://doi.org/10.1080/09553002.2016.1175681.
  • [9] Kavaz, E., Tekin, H.O., Agar, O., Altunsoy, E.E., Kilicoglu, O., Kamislioglu, M., Abuzaid, M.M., Sayyed, M.I., 2019b. The Mass stopping power / projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide. Ceram. Int. https://doi.org/10.1016/j.ceramint.2019.05.028.
  • [10] Kavaz, E., Yorgun, N.Y., 2018. Gamma ray buildup factors of lithium borate glasses doped with minerals. J. Alloys Compd. 752, 61–67. https://doi.org/10.1016/j.jallcom.2018.04.106.
  • [11] Levet, A., Kavaz, E., Özdemir, Y., 2020. An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. J. Alloys Compd. 819, 152946. https://doi.org/10.1016/j.jallcom.2019.152946.
  • [12] Manohara, S.R., Hanagodimath, S.M., Gerward, L., 2008. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: Studies of some biological molecules in the energy range 1 keV-20 MeV. Med. Phys. https://doi.org/10.1118/1.2815936.
  • [13] Obaid, S.S., Sayyed, M.I., Gaikwad, D.K., Pawar, P.P., 2018. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. https://doi.org/10.1016/j.radphyschem.2018.02.026.
  • [14] Oluwaseun Azeez, M., Ahmad, S., Al-Dulaijan, S.U., Maslehuddin, M., Abbas Naqvi, A., 2019. Radiation shielding performance of heavy-weight concrete mixtures. Constr. Build. Mater. 224, 284–291. https://doi.org/10.1016/j.conbuildmat.2019.07.077.
  • [15] Pollock, T. M. and Tin, S., 2006. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. Journal of propulsion and power, 22(2), 361-374.
  • [16] Rammah, Y.S., Mahmoud, K.A., Kavaz, E., Kumar, A., El-Agawany, F.I., 2020. The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceram. Int. In Press. https://doi.org/10.1016/j.ceramint.2020.04.018.
  • [17] Reed, R. C., 2006. The Superalloys Fundamentals and Applications. Cambridge University Press, 372, New York.
  • [18] Sayyed, M.I., Mohammed, F.Q., Mahmoud, K.A., Lacomme, E., Kaky, K.M., Khandaker, M.U., Faruque, M.R.I., 2020. Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety. Appl. Sci. https://doi.org/10.3390/app10217680.
  • [19] Segersall, M., 2013. Nickel Based SingleCrystal Superalloys the crystal orientation influence on high temperature properties. Licentiate Thesis, Linköping University Institute of Technology, Linköping, Sweden.
  • [20] Sharma, R., Sharma, J., Singh, T., 2016. Effective Atomic Numbers for Some Alloys at 662 keV Using Gamma Rays Backscattering Technique. Phys. Sci. Int. J. https://doi.org/10.9734/psij/2016/27243.
  • [21] Singh, T., Kaur, A., Sharma, J., Singh, P.S., 2018. Gamma rays’ shielding parameters for some Pb-Cu binary alloys. Eng. Sci. Technol. an Int. J. https://doi.org/10.1016/j.jestch.2018.06.012.
  • [22] Singh, V.P., Badiger, N.M., 2014. Gamma ray and neutron shielding properties of some alloy materials. Ann. Nucl. Energy 64, 301–310. https://doi.org/10.1016/j.anucene.2013.10.003.
  • [23] Sirin, M., 2020. The effect of titanium (Ti) additive on radiation shielding efficiency of Al25Zn alloy. Prog. Nucl. Energy. https://doi.org/10.1016/j.pnucene.2020.103470.
  • [24] Swinehart, D.F., 1962. The Beer-Lambert law. J. Chem. Educ. https://doi.org/10.1021/ed039p333.
  • [25] Yan, G., Yu, W., Shengping, S., 2020. Oxidation protection of enamel coated Ni based superalloys: Microstructure and interfacial reaction. Corros. Sci. https://doi.org/10.1016/j.corsci.2020.108760.
  • [26] Yao, Z.Y., Möncke, D., Kamitsos, E.I., Houizot, P., Célarié, F., Rouxel, T., Wondraczek, L., 2016. Structure and mechanical properties of copper-lead and copper-zinc borate glasses. J. Non. Cryst. Solids. https://doi.org/10.1016/j.jnoncrysol.2015.12.005
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Zeynep Işık Karadoğan 0000-0001-5083-6816

Yüksel Özdemir Bu kişi benim 0000-0003-3684-6254

Esra Kavaz 0000-0002-7016-2510

Yayımlanma Tarihi 31 Mayıs 2021
Gönderilme Tarihi 26 Kasım 2020
Kabul Tarihi 14 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE Z. Işık Karadoğan, Y. Özdemir, ve E. Kavaz, “Ni Tabanlı Bazı Süperalaşımların Foton Etkileşim Özelliklerinin İncelenmesi”, ECJSE, c. 8, sy. 2, ss. 552–566, 2021, doi: 10.31202/ecjse.831869.