Araştırma Makalesi
BibTex RIS Kaynak Göster

3D Yazıcılar İçin Tasarlanan Harçlarının Ekstrüde Edilebilirlikleri

Yıl 2021, Cilt: 8 Sayı: 1, 410 - 420, 31.01.2021
https://doi.org/10.31202/ecjse.852736

Öz

İnşaat sektöründe 3D yazıcıların kullanımı günden güne yaygınlaşmaktadır. 3D yazıcılarda kullanılan harçların yazdırılabilmeleri için özel olarak tasarlanmaları gerekir. Bu çalışmada, 3D yazıcı için tasarlanan harçların ekstrüde edilebilirliği araştırılmıştır. Bağlayıcı olarak çimento kullanılan harçlar, maksimum tane boyutu 0.4 mm olan agregalarla ve 0.37 su/çimento oranında hazırlanmıştır. Harçlar ekstrüzyon cihazında 50-200 mm/dk hız aralıklarında ve dairesel ve dikdörtgen çıkış ucu kullanılarak ekstrüde edilmişlerdir. Çalışmada, RAM tipi ektrüzyon kullanılmıştır. Harçların ekstrüzyon cihazından çıkış yaptıktan sonra kesintisiz bir şekilde akabilme uzunlukları ölçülmüştür. Elde edilen sonuçlara göre, ekstrüzyon hızının artmasıyla birlikte harçların kesintisiz bir şekilde akabilmeleri sağlanmıştır. Diğer yandan, dairesel çıkış ucuyla ekstrüde edilen harçlar dikdörtgen uçlarla ekstrüde edilenlere göre daha kesintisiz bir şekilde elde edilebilmişlerdir. 3D yazıcı harçlar için hem kesintisiz ektrüde edilebilen hem de konulduğu yüzeyde dağılmayan harçlar elde edilmiştir.

Proje Numarası

19.FEN.BİL.37

Teşekkür

Bu çalışma Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 19.FEN.BİL.37 nolu proje kapsamında desteklenmiştir.

Kaynakça

  • [1] Bos, F., Wolfs, R., Ahmed, Z., Salet, T., Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual Phys. Prototyp. 2016, 11, 209–225.
  • [2] Ramrez, R.R., Alarcón, L.F.C., Knights, P., Benchmarking system for evaluating management practices in the construction industry, Journal of Management in Engineering 20 (3) (2004) 110-117.
  • [3] Nerella, V.N., Ogura, H., Mechtcherine, V., Incorporating reinforcement into digital concrete construction, Proceedings of the IASS Symposium 2018 Creativity in Structural Design, Boston, 2018.
  • [4] Buswell, R.A., Leal de Silva, W.R., Jones, S.Z., Dirrenberger, J., 3D printing using concrete extrusion: A roadmap for research. Cem. Concr. Res. 2018, 112, 37–49.
  • [5] Shakor, P., Nejadi, S., Paul, G., Malek, S., Review of Emerging Additive Manufacturing Technologies in 3D Printing of Cementitious Materials in the Construction Industry. Front. Built Environ. 2019, 4.
  • [6] De Leon, A.C., Chen, Q., Palaganas, N.B., Palaganas, J.O., Manapat, J., Advincula, R.C., High performance polymer nanocomposites for additive manufacturing applications, Reactive and Functional Polymers 103 (2016) 141-155.
  • [7] Murr, L.E., Gaytan, S.M., Medina, F., Martinez, E., Martinez, J.L., Hernandez, D.H., Machado, B.I., Ramirez, D.A., Wicker, R.B., Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting, Materials Science and Engineering A 527 (7-8) (2010) 1861-1868.
  • [8] Luo, J., Pan, H., Kinzel, E.C., Additive manufacturing of glass, Journal of Manufac- turing Science and Engineering 136 (6) (2014) 061024.
  • [9] Willmann, J., Knauss, M., Bonwetsch, T., Apolinarska, A.A., Gramazio, F., Kohler, M., Robotic timber construction expanding additive fabrication to new dimensions, Automation in Construction 61 (2016) 16-23.
  • [10] Uygunoğlu, T., Barlas Özgüven, S., Topçu, İ.B., 3D teknolojisi ile yapı malzemesi üretimindeki gelişmeler, Internatıonal Journal of 3D Prıntıng Technologıes And Dıgıtal Industry 3:3 (2019) 279-288.
  • [11] Soltan, D.G., Li, V.C., A self-reinforced cementitious composite for building-scale 3D printing, Cement and Concrete Composites 90 (2018) 1-13.
  • [12] Panda, B., Paul, S.C., Tan, M.J., Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material, Materials Letters 209 (2017) 146-149.
  • [13] Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Gibb, A.G.F., Thorpe, T., Mix design and fresh properties for high-performance printing concrete. Mater. Struct. 2012, 45, 1221-1232.
  • [14] Shakor, P., Nejadi, S., Paul, G., A Study into the Effect of Differrent Nozzles Shapes and Fibre-Reinforcement in 3D Printed Mortar, Materials 2019, 12, 1708, 1-23.
  • [15] Li, X., Zhou, R., Yao, W., Fan, X., Flow characteristic of highly underexpanded jets from various nozzle geometries. Appl. Therm. Eng. 2017, 125 (Suppl. C), 240–253.
  • [16] Kwon, H. Experimentation and Analysis of Contour Crafting (CC) Process Using Uncured Ceramic Materials; University Of Southern California: Los Angeles, CA, USA, 2002.
  • [17] Lim, S., Buswell, R.A., Le, T.T., Wackrow, R., Austin, S.A., Gibb, A.G.F., Thorpe, T. Development of a viable concrete printing process. In Proceedings of the 28th International Symposium on Automation and Robotics in Construction, (ISARC2011), Seoul, Korea, 29 June–2 July 2011; pp. 665–670.
  • [18] Marchment, T.; Sanjayan, J. Method of Enhancing Interlayer Bond Strength in 3D Concrete Printing. In Proceedings of the 1st RILEM International Conference on Concrete and Digital Fabrication, Zurich, Switzerland, 10–12 September 2018; Springer: Zurich, Switzerland, 2019; pp. 148–156.
  • [19] Tay, Y.W.D., Qian, Y., Tan, M.J., Printability region for 3D concrete printing using slump and slump flow test, Composites Part B: Engineering, 2019, 174, 106968, 1-9.
  • [20] Figueiredo S.C., Rodriguez C.R., Ahmed Z.Y., Bos D.H., Xu Y., Salet T.M., Copuroğlu O., Schlangen E., Bos F.P., An approach to develop printable strain hardening cementitious composites, Materials and Design 169 (2019) 107651, 1-17.
  • [21] TS EN 197-1, ‘Çimento- Bölüm 1: Genel Çimentolar Bileşim, Özellikler ve Uygunluk Kriterleri’, Türk Standartları Enstitüsü, Ankara, (2012).

Extrudibility of Mortars Designed for 3D Printers

Yıl 2021, Cilt: 8 Sayı: 1, 410 - 420, 31.01.2021
https://doi.org/10.31202/ecjse.852736

Öz

The use of 3D printers in the construction industry is increasing day by day. The grout used in 3D printers must be specially designed to be printed. In this study, the extrudibility of mortars designed for 3D printing was investigated. Mortars using cement as binder were prepared with aggregates with a maximum particle size of 0.4 mm and at a water / cement ratio of 0.37. The mortars were extruded in the extruder at speeds of 50-200 mm / min using a circular and rectangular outlet. RAM type extrusion was used in the study. The continuous flow length of the mortars after exiting the extruder was measured. According to the results, with the increase of the extrusion speed, the continuous flow of the mortars was achieved. On the other hand, mortars extruded with a circular exit end could be obtained more seamlessly than those extruded with rectangular ends. For 3D printer mortars, mortars that can be extruded continuously and do not disperse on the surface were obtained.

Proje Numarası

19.FEN.BİL.37

Kaynakça

  • [1] Bos, F., Wolfs, R., Ahmed, Z., Salet, T., Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual Phys. Prototyp. 2016, 11, 209–225.
  • [2] Ramrez, R.R., Alarcón, L.F.C., Knights, P., Benchmarking system for evaluating management practices in the construction industry, Journal of Management in Engineering 20 (3) (2004) 110-117.
  • [3] Nerella, V.N., Ogura, H., Mechtcherine, V., Incorporating reinforcement into digital concrete construction, Proceedings of the IASS Symposium 2018 Creativity in Structural Design, Boston, 2018.
  • [4] Buswell, R.A., Leal de Silva, W.R., Jones, S.Z., Dirrenberger, J., 3D printing using concrete extrusion: A roadmap for research. Cem. Concr. Res. 2018, 112, 37–49.
  • [5] Shakor, P., Nejadi, S., Paul, G., Malek, S., Review of Emerging Additive Manufacturing Technologies in 3D Printing of Cementitious Materials in the Construction Industry. Front. Built Environ. 2019, 4.
  • [6] De Leon, A.C., Chen, Q., Palaganas, N.B., Palaganas, J.O., Manapat, J., Advincula, R.C., High performance polymer nanocomposites for additive manufacturing applications, Reactive and Functional Polymers 103 (2016) 141-155.
  • [7] Murr, L.E., Gaytan, S.M., Medina, F., Martinez, E., Martinez, J.L., Hernandez, D.H., Machado, B.I., Ramirez, D.A., Wicker, R.B., Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting, Materials Science and Engineering A 527 (7-8) (2010) 1861-1868.
  • [8] Luo, J., Pan, H., Kinzel, E.C., Additive manufacturing of glass, Journal of Manufac- turing Science and Engineering 136 (6) (2014) 061024.
  • [9] Willmann, J., Knauss, M., Bonwetsch, T., Apolinarska, A.A., Gramazio, F., Kohler, M., Robotic timber construction expanding additive fabrication to new dimensions, Automation in Construction 61 (2016) 16-23.
  • [10] Uygunoğlu, T., Barlas Özgüven, S., Topçu, İ.B., 3D teknolojisi ile yapı malzemesi üretimindeki gelişmeler, Internatıonal Journal of 3D Prıntıng Technologıes And Dıgıtal Industry 3:3 (2019) 279-288.
  • [11] Soltan, D.G., Li, V.C., A self-reinforced cementitious composite for building-scale 3D printing, Cement and Concrete Composites 90 (2018) 1-13.
  • [12] Panda, B., Paul, S.C., Tan, M.J., Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material, Materials Letters 209 (2017) 146-149.
  • [13] Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Gibb, A.G.F., Thorpe, T., Mix design and fresh properties for high-performance printing concrete. Mater. Struct. 2012, 45, 1221-1232.
  • [14] Shakor, P., Nejadi, S., Paul, G., A Study into the Effect of Differrent Nozzles Shapes and Fibre-Reinforcement in 3D Printed Mortar, Materials 2019, 12, 1708, 1-23.
  • [15] Li, X., Zhou, R., Yao, W., Fan, X., Flow characteristic of highly underexpanded jets from various nozzle geometries. Appl. Therm. Eng. 2017, 125 (Suppl. C), 240–253.
  • [16] Kwon, H. Experimentation and Analysis of Contour Crafting (CC) Process Using Uncured Ceramic Materials; University Of Southern California: Los Angeles, CA, USA, 2002.
  • [17] Lim, S., Buswell, R.A., Le, T.T., Wackrow, R., Austin, S.A., Gibb, A.G.F., Thorpe, T. Development of a viable concrete printing process. In Proceedings of the 28th International Symposium on Automation and Robotics in Construction, (ISARC2011), Seoul, Korea, 29 June–2 July 2011; pp. 665–670.
  • [18] Marchment, T.; Sanjayan, J. Method of Enhancing Interlayer Bond Strength in 3D Concrete Printing. In Proceedings of the 1st RILEM International Conference on Concrete and Digital Fabrication, Zurich, Switzerland, 10–12 September 2018; Springer: Zurich, Switzerland, 2019; pp. 148–156.
  • [19] Tay, Y.W.D., Qian, Y., Tan, M.J., Printability region for 3D concrete printing using slump and slump flow test, Composites Part B: Engineering, 2019, 174, 106968, 1-9.
  • [20] Figueiredo S.C., Rodriguez C.R., Ahmed Z.Y., Bos D.H., Xu Y., Salet T.M., Copuroğlu O., Schlangen E., Bos F.P., An approach to develop printable strain hardening cementitious composites, Materials and Design 169 (2019) 107651, 1-17.
  • [21] TS EN 197-1, ‘Çimento- Bölüm 1: Genel Çimentolar Bileşim, Özellikler ve Uygunluk Kriterleri’, Türk Standartları Enstitüsü, Ankara, (2012).
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tayfun Uygunoğlu 0000-0003-4382-8257

Sevcan Barlas Özgüven Bu kişi benim 0000-0002-1242-5642

Proje Numarası 19.FEN.BİL.37
Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 3 Ocak 2021
Kabul Tarihi 25 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

IEEE T. Uygunoğlu ve S. Barlas Özgüven, “3D Yazıcılar İçin Tasarlanan Harçlarının Ekstrüde Edilebilirlikleri”, ECJSE, c. 8, sy. 1, ss. 410–420, 2021, doi: 10.31202/ecjse.852736.