Araştırma Makalesi
BibTex RIS Kaynak Göster

Çekiş Kontrolü ve Dört Tekerlek Motorlu Elektrikli Araçlar için PD-Bulanık Kontrollü Toplam Sürüş Kuvveti Dağıtım Stratejisi

Yıl 2022, Cilt: 9 Sayı: 1, 65 - 85, 31.01.2022
https://doi.org/10.31202/ecjse.942644

Öz

Bu makalede aracın kaygan yüzeylere geçerken aracın çekiş çalışmasını yönetmek ve kayma oranının aşırı değerlere ulaşmasını önlemek amacıyla dört tekerlekli motorlu elektrikli araçlar için bir tork dağıtım kontrol sistemi önerilmiştir. İtici güç kontrolü, önerilen kontrol sistemindeki ana kontrolördür ve iki kontrol döngüsünden oluşur. PD-Bulanık mantık ve PI-kontrol, aracın dengesini artırmak için iç kontrol döngüsünde tekerlek hız kontrolörü olarak uygulanır. Toplam talep edilen itici gücü korumak için, araç yolda düşük sürtünme katsayılı yüzey ile hareket ettiğinde kuvvet dağıtım stratejileri elde edilir. Ayrıca, araç bölünmüş kaygan yüzeylere girdiğinde bir yalpalama momenti bastırıcı olarak çalışır ve bu da aracın performansını artırır. Önerilen araç dinamikleri ve tork dağıtım kontrol sistemi Simulink-MATLAB Programı kullanılarak benzetilmiştir. Simülasyonun sonuçları önerilen yöntemin etkinliğini göstermiştir.

Kaynakça

  • [1]. Jalali, K., Uchida, T., McPhee, J., Lambert, S. J. S. I. J. o. A. P., 2012, Development of a fuzzy slip control system for electric vehicles with in-wheel motors, 1, 1, 46-64.
  • [2]. Fazelpour, F., Vafaeipour, M., Rahbari, O., Rosen, M. A. J. E. C., Management, 2014, Intelligent optimization to integrate a plug-in hybrid electric vehicle smart parking lot with renewable energy resources and enhance grid characteristics, 77, 250-261.
  • [3]. Xu, W., Chen, H., Zhao, H., Ren, B., 2019, Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system, Mechatronics, 57, 95-108.
  • [4]. Wong, A., Kasinathan, D., Khajepour, A., Chen, S.-K., Litkouhi, B. J. C. E. P., 2016, Integrated torque vectoring and power management framework for electric vehicles, 48, 22-36.
  • [5]. Wang, Z., Qu, C., Zhang, L., Xue, X., Wu, J. J. I. A., 2018, Optimal component sizing of a four-wheel independently-actuated electric vehicle with a real-time torque distribution strategy, 6, 49523-49536.
  • [6]. Chiang, W.-P., Yin, D., Shimizu, H. J. J. o. t. C. I. o. E., 2015, Slip-based regenerative ABS control for in-wheel-motor drive EV, 38, 2, 220-231.
  • [7]. Maeda, K., Fujimoto, H., Hori, Y., 2017, Four-wheel Driving-force Distribution Method for Instantaneous or Split Slippery Roads for Electric Vehicle, Automatika, 54, 1, 103-113.
  • [8]. Fujimoto, H.,Harada, S. J. I. T. o. I. E., 2015, Model-based range extension control system for electric vehicles with front and rear driving–braking force distributions, 62, 5, 3245-3254.
  • [9]. Hori, Y., Toyoda, Y., Tsuruoka, Y. J. I. t. o. I. A., 1998, Traction control of electric vehicle: basic experimental results using the test EV" UOT electric march", 34, 5, 1131-1138.
  • [10]. He, P.,Hori, Y. (2006). Optimum traction force distribution for stability improvement of 4WD EV in critical driving condition. 9th IEEE International Workshop on Advanced Motion Control, 2006., IEEE.
  • [11]. Yuan, L., Zhao, H., Chen, H., Ren, B. J. M., 2016, Nonlinear MPC-based slip control for electric vehicles with vehicle safety constraints, 38, 1-15.
  • [12]. Ge, Y.,Chang, C. (2011). Torque distribution control for electric vehicle based on traction force observer. 2011 IEEE International Conference on Computer Science and Automation Engineering, IEEE.
  • [13]. Yin, D.,Hori, Y. (2008). A new approach to traction control of EV based on maximum effective torque estimation. 2008 34th Annual Conference of IEEE Industrial Electronics, IEEE.
  • [14]. Guangcai, Z., Yugong, L., Keqiang, L., Xiaomin, L. (2007). Slip ratio control of independent AWD EV based on fuzzy DSMC. Proc. IEEE Int. Conf. Veh. Electron. Safety.
  • [15]. Jin, L.-Q., Ling, M., Yue, W. J. P. o., 2017, Tire-road friction estimation and traction control strategy for motorized electric vehicle, 12, 6, e0179526.
  • [16]. Dizqah, A. M., Lenzo, B., Sorniotti, A., Gruber, P., Fallah, S., De Smet, J. J. I. T. o. I. E., 2016, A fast and parametric torque distribution strategy for four-wheel-drive energy-efficient electric vehicles, 63, 7, 4367-4376.
  • [17]. Li, Y., Li, B., Xu, X., Sun, X. J. I. A., 2017, A nonlinear decoupling control approach using RBFNNI-based robust pole placement for a permanent magnet in-wheel motor, 6, 1844-1854.
  • [18]. Li, Y., Deng, H., Xu, X., Jiang, H. (2018). Review on torque distribution strategies for four in-wheel motor drive electric vehicles. IOP Conference Series: Materials Science and Engineering, IOP Publishing.
  • [19]. Zhao, B., Xu, N., Chen, H., Guo, K., Huang, Y. J. I. T. o. V. T., 2020, Design and Experimental Evaluations on Energy-Efficient Control for 4WIMD-EVs Considering Tire Slip Energy.
  • [20]. Moore, D. F., 1975, The friction of pneumatic tyres.
  • [21]. Gillespie, T. D., 1992, Fundamentals of vehicle dynamics, Society of automotive engineers Warrendale, PA.
  • [22]. Siampis, E., 2016, Optimal torque vectoring control strategies for stabilisation of electric vehicles at the limits of handling.
  • [23]. Jazar, R. N., 2017, Vehicle dynamics: theory and application, Springer.
  • [24]. Pacejka, H. B.,Bakker, E., 1992a, THE MAGIC FORMULA TYRE MODEL, Vehicle System Dynamics, 21, sup001, 1-18.
  • [25]. Pacejka, H. B.,Bakker, E. J. V. s. d., 1992b, The magic formula tyre model, 21, S1, 1-18.
  • [26]. McTrustry, S. C., 2016, Modelling and control of electric vehicles with individually actuated in-wheel motors.

Traction Control and Total Driving Force Distribution Strategy for Electric Vehicles with Four in Wheel Motors based on PD-Fuzzy Control

Yıl 2022, Cilt: 9 Sayı: 1, 65 - 85, 31.01.2022
https://doi.org/10.31202/ecjse.942644

Öz

In this paper, a torque distribution control for electric vehicles with an in-wheel motor installed for each wheel is proposed in order to manage the traction operation of the vehicle and avoid slip ratio from reach extreme values while the vehicle moves into slippery surfaces. The driving force control is the main controller in the proposed control system and its consist from two control loop. PD-Fuzzy logic and PI-control are applied as a wheel speed controller in the inner control loop with the aim of improving stability and support the traction operation of the wheels. To retain the total requested driving force, force distribution strategies are obtained when the vehicle moves on the road with a low friction coefficient surface. Also, it works as a yaw moment suppressor when the vehicle runs into split slippery surfaces which improves vehicle performance. The proposed vehicle dynamics and torque distribution control system are simulated using Simulink-MATLAB Program. The results of the simulation demonstrated the effectiveness of the proposed method.

Kaynakça

  • [1]. Jalali, K., Uchida, T., McPhee, J., Lambert, S. J. S. I. J. o. A. P., 2012, Development of a fuzzy slip control system for electric vehicles with in-wheel motors, 1, 1, 46-64.
  • [2]. Fazelpour, F., Vafaeipour, M., Rahbari, O., Rosen, M. A. J. E. C., Management, 2014, Intelligent optimization to integrate a plug-in hybrid electric vehicle smart parking lot with renewable energy resources and enhance grid characteristics, 77, 250-261.
  • [3]. Xu, W., Chen, H., Zhao, H., Ren, B., 2019, Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system, Mechatronics, 57, 95-108.
  • [4]. Wong, A., Kasinathan, D., Khajepour, A., Chen, S.-K., Litkouhi, B. J. C. E. P., 2016, Integrated torque vectoring and power management framework for electric vehicles, 48, 22-36.
  • [5]. Wang, Z., Qu, C., Zhang, L., Xue, X., Wu, J. J. I. A., 2018, Optimal component sizing of a four-wheel independently-actuated electric vehicle with a real-time torque distribution strategy, 6, 49523-49536.
  • [6]. Chiang, W.-P., Yin, D., Shimizu, H. J. J. o. t. C. I. o. E., 2015, Slip-based regenerative ABS control for in-wheel-motor drive EV, 38, 2, 220-231.
  • [7]. Maeda, K., Fujimoto, H., Hori, Y., 2017, Four-wheel Driving-force Distribution Method for Instantaneous or Split Slippery Roads for Electric Vehicle, Automatika, 54, 1, 103-113.
  • [8]. Fujimoto, H.,Harada, S. J. I. T. o. I. E., 2015, Model-based range extension control system for electric vehicles with front and rear driving–braking force distributions, 62, 5, 3245-3254.
  • [9]. Hori, Y., Toyoda, Y., Tsuruoka, Y. J. I. t. o. I. A., 1998, Traction control of electric vehicle: basic experimental results using the test EV" UOT electric march", 34, 5, 1131-1138.
  • [10]. He, P.,Hori, Y. (2006). Optimum traction force distribution for stability improvement of 4WD EV in critical driving condition. 9th IEEE International Workshop on Advanced Motion Control, 2006., IEEE.
  • [11]. Yuan, L., Zhao, H., Chen, H., Ren, B. J. M., 2016, Nonlinear MPC-based slip control for electric vehicles with vehicle safety constraints, 38, 1-15.
  • [12]. Ge, Y.,Chang, C. (2011). Torque distribution control for electric vehicle based on traction force observer. 2011 IEEE International Conference on Computer Science and Automation Engineering, IEEE.
  • [13]. Yin, D.,Hori, Y. (2008). A new approach to traction control of EV based on maximum effective torque estimation. 2008 34th Annual Conference of IEEE Industrial Electronics, IEEE.
  • [14]. Guangcai, Z., Yugong, L., Keqiang, L., Xiaomin, L. (2007). Slip ratio control of independent AWD EV based on fuzzy DSMC. Proc. IEEE Int. Conf. Veh. Electron. Safety.
  • [15]. Jin, L.-Q., Ling, M., Yue, W. J. P. o., 2017, Tire-road friction estimation and traction control strategy for motorized electric vehicle, 12, 6, e0179526.
  • [16]. Dizqah, A. M., Lenzo, B., Sorniotti, A., Gruber, P., Fallah, S., De Smet, J. J. I. T. o. I. E., 2016, A fast and parametric torque distribution strategy for four-wheel-drive energy-efficient electric vehicles, 63, 7, 4367-4376.
  • [17]. Li, Y., Li, B., Xu, X., Sun, X. J. I. A., 2017, A nonlinear decoupling control approach using RBFNNI-based robust pole placement for a permanent magnet in-wheel motor, 6, 1844-1854.
  • [18]. Li, Y., Deng, H., Xu, X., Jiang, H. (2018). Review on torque distribution strategies for four in-wheel motor drive electric vehicles. IOP Conference Series: Materials Science and Engineering, IOP Publishing.
  • [19]. Zhao, B., Xu, N., Chen, H., Guo, K., Huang, Y. J. I. T. o. V. T., 2020, Design and Experimental Evaluations on Energy-Efficient Control for 4WIMD-EVs Considering Tire Slip Energy.
  • [20]. Moore, D. F., 1975, The friction of pneumatic tyres.
  • [21]. Gillespie, T. D., 1992, Fundamentals of vehicle dynamics, Society of automotive engineers Warrendale, PA.
  • [22]. Siampis, E., 2016, Optimal torque vectoring control strategies for stabilisation of electric vehicles at the limits of handling.
  • [23]. Jazar, R. N., 2017, Vehicle dynamics: theory and application, Springer.
  • [24]. Pacejka, H. B.,Bakker, E., 1992a, THE MAGIC FORMULA TYRE MODEL, Vehicle System Dynamics, 21, sup001, 1-18.
  • [25]. Pacejka, H. B.,Bakker, E. J. V. s. d., 1992b, The magic formula tyre model, 21, S1, 1-18.
  • [26]. McTrustry, S. C., 2016, Modelling and control of electric vehicles with individually actuated in-wheel motors.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Islam R.h Shamıa 0000-0002-3275-7898

Kemal Keskin 0000-0002-3969-2396

Yayımlanma Tarihi 31 Ocak 2022
Gönderilme Tarihi 25 Mayıs 2021
Kabul Tarihi 16 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

IEEE I. R. Shamıa ve K. Keskin, “Traction Control and Total Driving Force Distribution Strategy for Electric Vehicles with Four in Wheel Motors based on PD-Fuzzy Control”, ECJSE, c. 9, sy. 1, ss. 65–85, 2022, doi: 10.31202/ecjse.942644.