Araştırma Makalesi
BibTex RIS Kaynak Göster

Statik Yükleme Altında Oksetik İç Yapılı Sandviç Kompozitlerin İncelenmesi

Yıl 2022, Cilt: 9 Sayı: 1, 350 - 359, 31.01.2022
https://doi.org/10.31202/ecjse.978310

Öz

Sandviç kompozitler, farklı malzeme kombinasyonları ile birleştirilerek özel uygulamalar için oluşturulabilen optimum malzeme tasarımlarıdır. Çok sayıda alternatif sandviç kompozit yapı biçimi ile farklı yüzey ve çekirdek malzemeler birleştirilebilir. Bu çalışmada; özellikle otomotiv tampon uygulamalarına yönelik olarak geliştirilen sandviç kompozit malzeme, naylon Poli-amid 12 (PA12) polimer malzemesinden oluşan çekirdek ile cam fiber takviyeli Polipropilen (GFRPP) alt – üst yüzeylerin bir araya getirilmesi ile elde edilmiştir. Malzemelerin önemli bir özelliği olan Poisson oranı; bir malzemenin kuvvet uygulandığı yöndeki şekil değiştirme miktarı ile aksi yöndeki şekil değiştirme miktarı arasındaki bağıntıyı verir. Poisson oranı birçok malzemede pozitif iken bazı malzemelerde ise negatiftir. Poisson oranı negatif olan bu malzemelere "oksetik malzeme" denir. Üretilen sandviç kompozitte negatif Poisson oranına sahip olan oksetik özellikteki çekirdek, üç boyutlu yazıcılardan birisi olan Fused Deposition Modelling (FDM) ile üretilmiştir. Girintili bal peteği geometrisi sayesinde üstün esneme özellikleri beklenmektedir. Bu amaçla; iki farklı kalınlıkta üretilen çekirdek geometrisine sahip olan sandviç kompozit malzemeler üç nokta eğme testlerine tabi tutulmuştur. Bu çalışma kapsamında mukavemet ve darbe absorbsiyonu açısından sandviç yapılarda kullanılan oksetik yapıların arasındaki mesafenin yapının kalınlığından daha önemli bir parametre olduğu ortaya konulmuştur.

Kaynakça

  • [1] Nasirzadeh R., Sabet A.R., "Study of foam density variations in composite sandwich panels under high velocity impact loading", International Journal of Impact Engineering, 2014, 63: 129-139.
  • [2] Rajaneesh A., Sridhar I., Rajendran S., "Relative performance of metal and polymeric foam sandwich plates under low velocity impact", International Journal of Impact Engineering, 2014, 65: 126-136.
  • [3] Ashwill T.D., Paquette J.A., "Composite Materials For Innovative Wind Turbine Blades", Sandia National Lab.(SNL-NM), Albuquerque, United States, (2008).
  • [4] Mishnaevsky Jr L., Favorsky O., " Composite materials in wind energy technology", Thermal to Mechanical Energy Conversion Engines and Requirements, EOLSS Publ. Oxford, UK, (2011).
  • [5] Steeves C.A., Fleck, N.A., "Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: analytical models and minimum weight design", International Journal of Mechanical Sciences, 2004, 46(4): 561-583.
  • [6] Steeves C.A., Fleck, N.A., "Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part II: experimental investigation and numerical modelling", International Journal of Mechanical Sciences, 2004, 46(4): 585-608.
  • [7] Abbadi A., Koutsawa Y., Carmasol A., Belouettar S., Azari Z., "Experimental and numerical characterization of honeycomb sandwich composite panels", Simulation Modelling Practice and Theory, 2009, 17(10): 1533-1547.
  • [8] Juntikka R., Hallstrom S., "Shear characterization of sandwich core materials using four-point bending", Journal of Sandwich Structures & Materials, 2007, 9(1): 67-94. [9] Fathi A., Wolff-Fabris F., Altstädt V., Gätzi R., "An investigation on the flexural properties of balsa and polymer foam core sandwich structures: Influence of core type and contour finishing options", Journal of Sandwich Structures & Materials, 2013, 15(5): 487-508.
  • [10] Fathi A., Keller J.H., Altstädt V., "Full-field shear analyses of sandwich core materials using Digital Image Correlation (DIC)", Composites Part B: Engineering, 2015, 70: 156-166.
  • [11] Kaboglu C., Pimenta S., Morris A., Dear, J.P., "The effect of different types of core material on the flexural behavior of sandwich composites for wind turbine blades", Journal of Thermal Engineering, 2017, 3(2): 1102-1109.
  • [12] Battley M., Burman M., "Characterization of ductile core materials", Journal of Sandwich Structures & Materials, 2010, 12(2): 237-252.
  • [13] Gupta N., Woldesenbet E., "Characterization of flexural properties of syntactic foam core sandwich composites and effect of density variation", Journal of Composite Materials, 2005, 39(24): 2197-2212.
  • [14] Gupta N., Woldesenbet E., Hore K., Sankaran S., "Response of syntactic foam core sandwich structured composites to three-point bending", Journal of Sandwich Structures & Materials, 2002, 4(3): 249-272.
  • [15] Dong G., Wijaya G., Tang Y., Zhao Y.F., "Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures", Additive Manufacturing, 2018, 19: 62-72.
  • [16] Yang L., "Experimental-assisted design development for an octahedral cellular structure using additive manufacturing", Rapid Prototyping Journal, 2015, 21(2): 168-176.
  • [17] Chen Y., Li T., Jia Z., Scarpa F., Yao C.W., Wang, L., "3D printed hierarchical honeycombs with shape integrity under large compressive deformations", Materials & Design, 2018, 137, 226-234.
  • [18] Hofstätter T., Pedersen D.B., Tosello G., Hansen H.N., "Applications of Fiber-Reinforced Polymers in Additive Manufacturing", Procedia CIRP, 2017, 66: 312-316.
  • [19] Evans A.G., Hutchinson J.W., Fleck N.A., Ashby M.F., Wadley H.N.G., "The topological design of multifunctional cellular metals", Progress in Materials Science, 2001, 46(3-4): 309-327.
  • [20] Ashby M.F., Evans T., Fleck N.A., Hutchinson J.W., Wadley H.N.G., Gibson L.J., "Metal foams: a design guide", Elsevier, USA, (2000).
  • [21] Brittain S.T., Sugimura Y., Schueller O.J.A., Evans A.G., Whitesides G.M., "Fabrication and mechanical performance of a mesoscale space-filling truss system", Journal of Microelectromechanical Systems, 2001, 10(1): 113-120.
  • [22] Evans A.G., Hutchinson J.W., Ashby M.F., "Multifunctionality of cellular metal systems", Progress in Materials Science, 1998, 43(3): 171-221.
  • [23] Ashby M.F., "The properties of foams and lattices", Philosophical Transactions of The Royal Society A, 2006, 364(1838): 15-30.
  • [24] Lakes R., "Advances in negative Poisson’s ratio materials", Advanced Materials, 1993, 5(4): 293-296.
  • [25] Milton G.W., "Composite materials with Poisson’s ratios close to-1", Journal of the Mechanics and Physics of Solids, 1992, 40(5): 1105-1137.
  • [26] Yang W., Li Z.M., Shi W., Xie B.H., Yang M.B., "Review on auxetic materials", Journal of Materials Science, 2004, 39(10): 3269-3279.
  • [27] Doyoyo M., Wan Hu J., "Plastic failure analysis of an auxetic foam or inverted strut lattice under longitudinal and shear loads", Journal of the Mechanics and Physics of Solids, 2006, 54(7): 1479-1492.
  • [28] Stephani G., Andersen O., Göhler H., Kostmann C., Kummel K., Quadbeck P., Reinfried M., Studnitzky T., Waag U., "Iron based cellular structures – status and prospects", Advanced Engineering Materials, 2006, 8(9): 847-852.
  • [29] Li M.Z., Stephani G., Kang K.J., "New cellular metals with enhanced energy absorption: wire-woven bulk kagome (WBK)-metal hollow sphere (MHS) hybrids", Advanced Engineering Materials, 2011, 13(1-2): 33-37.
  • [30] Goehler H., Jehring U., Meinert J., Hauser R., Quadbeck P., Kuemmel K., Stephani G., Kieback B., "Functionalized metallic hollow sphere structures", Advanced Engineering Materials, 2014, 16(3): 335-339.
  • [31] Chen Z., Wang Z., Zhou S., Shao J., Wu X., "Novel negative Poisson’s ratio lattice structures with enhanced stiffness and energy absorption capacity", Materials, 2018, 11(7): 1095.
  • [32] Xue Z., Hutchinson J.W., "A comparative study of impulse-resistant metal sandwich plates", International Journal of Impact Engineering, 2004, 30(10): 1283-1305.
  • [33] Kucewicz M., Baranowski P., Malachowski J., Poplawski A., Platek P., "Modelling, and characterization of 3D printed cellular structures", Materials & Design, 2018, 142: 177-189.
  • [34] Harris J.A., Winter R.E., McShane G.J., "Impact response of additively manufactured metallic hybrid lattice materials", International Journal of Impact Engineering, 2017, 104: 177-191.
  • [35] Xu J., Wu Y., Wang L., Li J., Yang Y., Tian Y., Gong Z., Zhang P., Nutt S., Yin S., "Compressive properties of hollow lattice truss reinforced honeycombs (Honeytubes) by additive manufacturing: Patterning and tube alignment effects", Materials & Design, 2018, 156: 446-457.
  • [36] Yin S., Wu L., Ma L., Nutt S., "Pyramidal lattice sandwich structures with hollow composite trusses", Composite Structures, 2011, 93(12): 3104-3111.
  • [37] Deshpande V.S., Ashby, M.F., Fleck N.A., "Foam topology: bending versus stretching dominated architectures", Acta Materialia, 2001, 49(6): 1035-1040.
  • [38] Hundley J.M., Clough E.C., Jacobsen A.J., "The low velocity impact response of sandwich panels with lattice core reinforcement", International Journal of Impact Engineering, 2015, 84: 64-77.
  • [39] Sarvestani H.Y., Akbarzadeh A.H., Niknam H., Hermenean K., "3D printed architected polymeric sandwich panels: Energy absorption and structural performance", Composite Structures, 2018, 200: 886-909.
  • [40] Sarvestani H.Y., Akbarzadeh A.H., Mirbolghasemi A., Hermenean K., "3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability", Materials & Design, 2018, 160: 179-193.
  • [41] Al-Saedi D.S.J., Masood S.H., Faizan-Ur-Rab M., Alomarah A., Ponnusamy P., "Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM", Materials & Design, 144: 32-44.
  • [42] Li T., Wang, L., "Bending behavior of sandwich composite structures with tunable 3D-printed core materials", Composite Structures, 2017, 175: 46-57.
  • [43] Choy S.Y., Sun C.N., Leong K.F., Wei J., "Compressive properties of functionally graded lattice structures manufactured by selective laser melting", Materials & Design, 2017, 131: 112-120.
  • [44] Hou Z., Tian X., Zhang J., Li D., "3D printed continuous fibre reinforced composite corrugated structure", Composite Structures, 2018, 184: 1005-1010.
  • [45] Kaboglu C., Yu L., Mohagheghian I., Blackman B.R.K., Kinloch A.J., Dear J.P., "Effects of the core density on the quasi-static flexural and ballistic performance of fibre-composite skin/foam-core sandwich structures", Journal of Materials Science, 2018, 53(24): 16393-16414.
  • [46] Kaboglu C., Mohagheghian I., Zhou J., Guan Z., Cantwell W., John S., Blackman B.R.K., Kinloch A.J., Dear J.P., "High-velocity impact deformation and perforation of fibre metal laminates", Journal of Materials Science, 2018, 53(6): 4209-4228.
  • [47] Pan B., Qian K., Xie H., Asundi A., "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review", Measurement Science and Technology, 2009, 20(6): 62001.

Investigation of Sandwich Composites with Auxetic Core under Static Loading

Yıl 2022, Cilt: 9 Sayı: 1, 350 - 359, 31.01.2022
https://doi.org/10.31202/ecjse.978310

Öz

Sandwich composites are optimum material designs that can be created for special applications by combining with different material combinations. Different surface and core materials can be combined with a number of alternative sandwich composite structures. In this study, the sandwich composite material, developed especially for automotive bumper applications, is obtained by combining the core consisting of nylon Polyamide 12 (PA12) polymer material and glass fiber reinforced Polypropylene (GFRPP) lower - upper surfaces. Poisson's ratio, which is an important property of materials; It gives the relationship between the amount of strain of a material in the direction in which the force is applied and the amount of strain in the opposite direction. Poisson's ratio is positive in many materials and negative in some materials. These materials with a negative Poisson ratio are called "oxetic materials". The core with negative Poisson ratio in the produced sandwich composite was produced with Fused Deposition Modeling (FDM), one of the three-dimensional printers. Superior flexing properties are expected thanks to the re-entrant honeycomb geometry. For this purpose, sandwich composite materials with core geometry produced in two different thicknesses were subjected to three-point bending tests. Within the scope of this study, it has been revealed that the distance between the oxetic structures used in sandwich structures is a more important parameter than the thickness of the structure in terms of strength and impact absorption.

Kaynakça

  • [1] Nasirzadeh R., Sabet A.R., "Study of foam density variations in composite sandwich panels under high velocity impact loading", International Journal of Impact Engineering, 2014, 63: 129-139.
  • [2] Rajaneesh A., Sridhar I., Rajendran S., "Relative performance of metal and polymeric foam sandwich plates under low velocity impact", International Journal of Impact Engineering, 2014, 65: 126-136.
  • [3] Ashwill T.D., Paquette J.A., "Composite Materials For Innovative Wind Turbine Blades", Sandia National Lab.(SNL-NM), Albuquerque, United States, (2008).
  • [4] Mishnaevsky Jr L., Favorsky O., " Composite materials in wind energy technology", Thermal to Mechanical Energy Conversion Engines and Requirements, EOLSS Publ. Oxford, UK, (2011).
  • [5] Steeves C.A., Fleck, N.A., "Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: analytical models and minimum weight design", International Journal of Mechanical Sciences, 2004, 46(4): 561-583.
  • [6] Steeves C.A., Fleck, N.A., "Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part II: experimental investigation and numerical modelling", International Journal of Mechanical Sciences, 2004, 46(4): 585-608.
  • [7] Abbadi A., Koutsawa Y., Carmasol A., Belouettar S., Azari Z., "Experimental and numerical characterization of honeycomb sandwich composite panels", Simulation Modelling Practice and Theory, 2009, 17(10): 1533-1547.
  • [8] Juntikka R., Hallstrom S., "Shear characterization of sandwich core materials using four-point bending", Journal of Sandwich Structures & Materials, 2007, 9(1): 67-94. [9] Fathi A., Wolff-Fabris F., Altstädt V., Gätzi R., "An investigation on the flexural properties of balsa and polymer foam core sandwich structures: Influence of core type and contour finishing options", Journal of Sandwich Structures & Materials, 2013, 15(5): 487-508.
  • [10] Fathi A., Keller J.H., Altstädt V., "Full-field shear analyses of sandwich core materials using Digital Image Correlation (DIC)", Composites Part B: Engineering, 2015, 70: 156-166.
  • [11] Kaboglu C., Pimenta S., Morris A., Dear, J.P., "The effect of different types of core material on the flexural behavior of sandwich composites for wind turbine blades", Journal of Thermal Engineering, 2017, 3(2): 1102-1109.
  • [12] Battley M., Burman M., "Characterization of ductile core materials", Journal of Sandwich Structures & Materials, 2010, 12(2): 237-252.
  • [13] Gupta N., Woldesenbet E., "Characterization of flexural properties of syntactic foam core sandwich composites and effect of density variation", Journal of Composite Materials, 2005, 39(24): 2197-2212.
  • [14] Gupta N., Woldesenbet E., Hore K., Sankaran S., "Response of syntactic foam core sandwich structured composites to three-point bending", Journal of Sandwich Structures & Materials, 2002, 4(3): 249-272.
  • [15] Dong G., Wijaya G., Tang Y., Zhao Y.F., "Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures", Additive Manufacturing, 2018, 19: 62-72.
  • [16] Yang L., "Experimental-assisted design development for an octahedral cellular structure using additive manufacturing", Rapid Prototyping Journal, 2015, 21(2): 168-176.
  • [17] Chen Y., Li T., Jia Z., Scarpa F., Yao C.W., Wang, L., "3D printed hierarchical honeycombs with shape integrity under large compressive deformations", Materials & Design, 2018, 137, 226-234.
  • [18] Hofstätter T., Pedersen D.B., Tosello G., Hansen H.N., "Applications of Fiber-Reinforced Polymers in Additive Manufacturing", Procedia CIRP, 2017, 66: 312-316.
  • [19] Evans A.G., Hutchinson J.W., Fleck N.A., Ashby M.F., Wadley H.N.G., "The topological design of multifunctional cellular metals", Progress in Materials Science, 2001, 46(3-4): 309-327.
  • [20] Ashby M.F., Evans T., Fleck N.A., Hutchinson J.W., Wadley H.N.G., Gibson L.J., "Metal foams: a design guide", Elsevier, USA, (2000).
  • [21] Brittain S.T., Sugimura Y., Schueller O.J.A., Evans A.G., Whitesides G.M., "Fabrication and mechanical performance of a mesoscale space-filling truss system", Journal of Microelectromechanical Systems, 2001, 10(1): 113-120.
  • [22] Evans A.G., Hutchinson J.W., Ashby M.F., "Multifunctionality of cellular metal systems", Progress in Materials Science, 1998, 43(3): 171-221.
  • [23] Ashby M.F., "The properties of foams and lattices", Philosophical Transactions of The Royal Society A, 2006, 364(1838): 15-30.
  • [24] Lakes R., "Advances in negative Poisson’s ratio materials", Advanced Materials, 1993, 5(4): 293-296.
  • [25] Milton G.W., "Composite materials with Poisson’s ratios close to-1", Journal of the Mechanics and Physics of Solids, 1992, 40(5): 1105-1137.
  • [26] Yang W., Li Z.M., Shi W., Xie B.H., Yang M.B., "Review on auxetic materials", Journal of Materials Science, 2004, 39(10): 3269-3279.
  • [27] Doyoyo M., Wan Hu J., "Plastic failure analysis of an auxetic foam or inverted strut lattice under longitudinal and shear loads", Journal of the Mechanics and Physics of Solids, 2006, 54(7): 1479-1492.
  • [28] Stephani G., Andersen O., Göhler H., Kostmann C., Kummel K., Quadbeck P., Reinfried M., Studnitzky T., Waag U., "Iron based cellular structures – status and prospects", Advanced Engineering Materials, 2006, 8(9): 847-852.
  • [29] Li M.Z., Stephani G., Kang K.J., "New cellular metals with enhanced energy absorption: wire-woven bulk kagome (WBK)-metal hollow sphere (MHS) hybrids", Advanced Engineering Materials, 2011, 13(1-2): 33-37.
  • [30] Goehler H., Jehring U., Meinert J., Hauser R., Quadbeck P., Kuemmel K., Stephani G., Kieback B., "Functionalized metallic hollow sphere structures", Advanced Engineering Materials, 2014, 16(3): 335-339.
  • [31] Chen Z., Wang Z., Zhou S., Shao J., Wu X., "Novel negative Poisson’s ratio lattice structures with enhanced stiffness and energy absorption capacity", Materials, 2018, 11(7): 1095.
  • [32] Xue Z., Hutchinson J.W., "A comparative study of impulse-resistant metal sandwich plates", International Journal of Impact Engineering, 2004, 30(10): 1283-1305.
  • [33] Kucewicz M., Baranowski P., Malachowski J., Poplawski A., Platek P., "Modelling, and characterization of 3D printed cellular structures", Materials & Design, 2018, 142: 177-189.
  • [34] Harris J.A., Winter R.E., McShane G.J., "Impact response of additively manufactured metallic hybrid lattice materials", International Journal of Impact Engineering, 2017, 104: 177-191.
  • [35] Xu J., Wu Y., Wang L., Li J., Yang Y., Tian Y., Gong Z., Zhang P., Nutt S., Yin S., "Compressive properties of hollow lattice truss reinforced honeycombs (Honeytubes) by additive manufacturing: Patterning and tube alignment effects", Materials & Design, 2018, 156: 446-457.
  • [36] Yin S., Wu L., Ma L., Nutt S., "Pyramidal lattice sandwich structures with hollow composite trusses", Composite Structures, 2011, 93(12): 3104-3111.
  • [37] Deshpande V.S., Ashby, M.F., Fleck N.A., "Foam topology: bending versus stretching dominated architectures", Acta Materialia, 2001, 49(6): 1035-1040.
  • [38] Hundley J.M., Clough E.C., Jacobsen A.J., "The low velocity impact response of sandwich panels with lattice core reinforcement", International Journal of Impact Engineering, 2015, 84: 64-77.
  • [39] Sarvestani H.Y., Akbarzadeh A.H., Niknam H., Hermenean K., "3D printed architected polymeric sandwich panels: Energy absorption and structural performance", Composite Structures, 2018, 200: 886-909.
  • [40] Sarvestani H.Y., Akbarzadeh A.H., Mirbolghasemi A., Hermenean K., "3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability", Materials & Design, 2018, 160: 179-193.
  • [41] Al-Saedi D.S.J., Masood S.H., Faizan-Ur-Rab M., Alomarah A., Ponnusamy P., "Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM", Materials & Design, 144: 32-44.
  • [42] Li T., Wang, L., "Bending behavior of sandwich composite structures with tunable 3D-printed core materials", Composite Structures, 2017, 175: 46-57.
  • [43] Choy S.Y., Sun C.N., Leong K.F., Wei J., "Compressive properties of functionally graded lattice structures manufactured by selective laser melting", Materials & Design, 2017, 131: 112-120.
  • [44] Hou Z., Tian X., Zhang J., Li D., "3D printed continuous fibre reinforced composite corrugated structure", Composite Structures, 2018, 184: 1005-1010.
  • [45] Kaboglu C., Yu L., Mohagheghian I., Blackman B.R.K., Kinloch A.J., Dear J.P., "Effects of the core density on the quasi-static flexural and ballistic performance of fibre-composite skin/foam-core sandwich structures", Journal of Materials Science, 2018, 53(24): 16393-16414.
  • [46] Kaboglu C., Mohagheghian I., Zhou J., Guan Z., Cantwell W., John S., Blackman B.R.K., Kinloch A.J., Dear J.P., "High-velocity impact deformation and perforation of fibre metal laminates", Journal of Materials Science, 2018, 53(6): 4209-4228.
  • [47] Pan B., Qian K., Xie H., Asundi A., "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review", Measurement Science and Technology, 2009, 20(6): 62001.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Cihan Kaboğlu 0000-0002-6249-0565

Yayımlanma Tarihi 31 Ocak 2022
Gönderilme Tarihi 3 Ağustos 2021
Kabul Tarihi 23 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

IEEE C. Kaboğlu, “Statik Yükleme Altında Oksetik İç Yapılı Sandviç Kompozitlerin İncelenmesi”, ECJSE, c. 9, sy. 1, ss. 350–359, 2022, doi: 10.31202/ecjse.978310.