Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Seramiklerin Radyasyon Soğurma Kapasitelerinin Belirlenmesi

Yıl 2022, Cilt: 9 Sayı: 2, 522 - 531, 31.05.2022
https://doi.org/10.31202/ecjse.972672

Öz

İnsanların çoğu zamanını binaların (ev, ofis, okul, avm vs.) içerisinde geçirdiği göz önünde bulundurulduğunda yapı malzemelerinin radyasyon tutuculuk özelliklerinin önemli olduğu görülür. Bu bağlamda binalarda sıkça kullanılan seramik örneklerinde radyasyon tutuculuk özelliklerinin incelenmesi oldukça önemlidir. Aynı zamanda, radyasyon soğurma hesaplamalarının bir amacı da daha az kütleye sahip ve daha iyi soğurucu özelliği olan malzemeleri belirlemektir. Buna binaen yapılan çalışmada, yapı marketlerden alınan 8 farklı kalınlığa sahip olan ve farklı markalara ait 20 adet seramik numunesi 59.5 keV enerjili gama ışını ile ışınlandı ve Yüksek Saflıkta Germanyum Dedektörü (HPGe) kullanılarak seramik numunelerinin lineer ve kütle soğurma katsayıları deneysel olarak ölçüldü. Ayrıca, incelenen örneklerin radyasyondan korunma verimliliği (RPE), yarı değer kalınlığı (HVL) ve ortalama serbest yol (MFP) değerleri de hesaplandı. Ölçüm ve hesaplama sonuçlarına göre lineer soğurma katsayısı, kütle soğurma katsayısı, RPE, HVL ve MFP değerlerinin değişimleri sırasıyla, 0.5284 - 1.7543 cm-1, 0.2373 - 0.7078 cm2 g-1, 32.9326 - 75.8532, 0.3950 - 1.3115 cm ve 0.5700 - 1.8925 cm aralığında bulundu. Seramik örnekleri için hesaplanan lineer ve kütle soğurma katsayıları literatürde verilen bazı yapı malzemeleri ile kıyaslandı. Sonuç olarak, incelenen markalara ait seramik örneklerinin radyasyon soğurma kapasitelerinin birbirinden farklı olduğu görüldü. Bu farklılığın seramiklerin içeriğindeki element veya bileşiklerden kaynaklandığı söylenebilir.

Kaynakça

  • [1]. Dizman, S., Yildiz, O., Boyracı, G.M. and Kolayli, S., Determination of Natural Radioactivity Levels and Gamma Radiation Attenuation Coefficients in Propolis Samples and the Study of Its Antioxidant Properties, Radiochimica Acta, 2020, 108(10), 829–837
  • [2]. Sarinta, B. and Nageswara, A., Determination of Attenuation Coefficients of Some Wood Materials Based on Thickness and Chemical Composition. Canadian Journal of Physiology and Pharmacology, 2014, 92, 968.
  • [3]. Medhat, M. E. and Singh, V. P., Radiation Effects and Defects in Solids Incorporating Plasma Science and Plasma Technology Mass Attenuation Coefficients of Composite Materials by Geant4, XCOM and experimental data: comparative study. Radiation Effects and Defects in Solids, 2014, 69(9),800–807.
  • [4]. Sayyed, M. I., Akman, F., Kumar, A. and Kaçal, M. R., Evaluation of Radioprotection Properties of Some Selected Ceramic Samples, Results in Physics, 2018, 11(November) 1100–1104.
  • [5]. CCST, 2018. Ceramic Industry Macro Market Research.
  • [6]. Dizman, S., Investigation of Natural Radioactivity and Associated Radiological Hazards in Ceramic Sanitary Ware Products Commercially Sold in Turkey. International Journal of Analytical Chemistry, 2019, 00(00), 1–11.
  • [7]. TIMFED, Sector Research Report, 2017, September.
  • [8]. Akman, F., Durak, R., Kacal, M. R. and Bezgin, F., 2016. Study of Absorption Parameters around the K Edge for Selected Compounds of Gd. X-Ray Spectrometry, 45(2), 103–110.
  • [9]. Medhat, M. E., Gamma-ray Attenuation Coefficients of Some Building Materials Available in Egypt. Annals of Nuclear Energy, 2009, 36(6), 849–852.
  • [10]. Kumar, A., Gamma Ray Shielding Properties of PbO-Li2O-B2O3 glasses. Radiation Physics and Chemistry, 2017, 136, 50–530.
  • [11]. Parlak. Y., et al., Radiation Safety Guide: General Definitions and Radiation Protection Rules in Nuclear Medicine Applications. Nuclear Medicine Seminars, 2020, 6(2), 71–89.
  • [12]. Monte, E. G. S., For the Exposure Buildup Factors of Low and High Energies of Gamma Rays, 2009.
  • [13]. J. H. Hubbell and S. M. Seltzer, Tables of X-Ray Mass Attenuation, 1995.
  • [14]. Ünal, O., İçağa, Y. and Çoşkun, A., An Investigation of Radiation Absorption Properties of Barite Aggregate Concrete. Afyon Kocatepe University Journal of Sciences and Engineering, 2016, 16(1), 125–131.
  • [15]. Çalık, A. E. and Şirin, H., Theoretical Investigation of Half-Value Thickness of Some Construction Materials. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, 2018, 1–1.

Determination of the Radiation Absorption Capacity of Some Ceramics

Yıl 2022, Cilt: 9 Sayı: 2, 522 - 531, 31.05.2022
https://doi.org/10.31202/ecjse.972672

Öz

Considering that people spend most of their time in buildings (home, office, school, shopping mall, etc.), it is seen that the radiation absorption properties of building materials are important. In this context, it is very important to examine the radiation absorption properties of ceramic samples, which are frequently used in buildings. On the other hand, another purpose of radiation absorption calculations is to identify materials that have less mass and better absorbing properties. Therefore, in this study, 20 ceramic samples of 8 different thicknesses and different brands bought from construction markets were irradiated with 59.5 keV gamma rays, and the linear and mass absorption coefficients of the ceramic samples were experimentally measured using a High Purity Germanium Detector (HPGe). In addition, the radiation protection efficiency (RPE), half-value layer (HVL) and mean free path (MFP) values of the examined samples were calculated. According to measurement and calculation results, the changes in linear absorption coefficient, mass absorption coefficient, RPE, HVL and MFP values were found to be in the range of 0.5284 - 1.7543 cm-1, 0.2373 - 0.7078 cm2 g-1, 32.9326 - 75.8532, 0.3950 – 1.3115 cm and 0.5700 - 1.8925 cm, respectively. The linear and mass absorption coefficients calculated for ceramic samples were compared to some building materials given in the literature. As a result, it was seen that the radiation absorption capacities of the ceramic samples belonging to the brands examined were different from each other. It can be said that this difference is due to the elements or compounds in the content of the ceramics.

Kaynakça

  • [1]. Dizman, S., Yildiz, O., Boyracı, G.M. and Kolayli, S., Determination of Natural Radioactivity Levels and Gamma Radiation Attenuation Coefficients in Propolis Samples and the Study of Its Antioxidant Properties, Radiochimica Acta, 2020, 108(10), 829–837
  • [2]. Sarinta, B. and Nageswara, A., Determination of Attenuation Coefficients of Some Wood Materials Based on Thickness and Chemical Composition. Canadian Journal of Physiology and Pharmacology, 2014, 92, 968.
  • [3]. Medhat, M. E. and Singh, V. P., Radiation Effects and Defects in Solids Incorporating Plasma Science and Plasma Technology Mass Attenuation Coefficients of Composite Materials by Geant4, XCOM and experimental data: comparative study. Radiation Effects and Defects in Solids, 2014, 69(9),800–807.
  • [4]. Sayyed, M. I., Akman, F., Kumar, A. and Kaçal, M. R., Evaluation of Radioprotection Properties of Some Selected Ceramic Samples, Results in Physics, 2018, 11(November) 1100–1104.
  • [5]. CCST, 2018. Ceramic Industry Macro Market Research.
  • [6]. Dizman, S., Investigation of Natural Radioactivity and Associated Radiological Hazards in Ceramic Sanitary Ware Products Commercially Sold in Turkey. International Journal of Analytical Chemistry, 2019, 00(00), 1–11.
  • [7]. TIMFED, Sector Research Report, 2017, September.
  • [8]. Akman, F., Durak, R., Kacal, M. R. and Bezgin, F., 2016. Study of Absorption Parameters around the K Edge for Selected Compounds of Gd. X-Ray Spectrometry, 45(2), 103–110.
  • [9]. Medhat, M. E., Gamma-ray Attenuation Coefficients of Some Building Materials Available in Egypt. Annals of Nuclear Energy, 2009, 36(6), 849–852.
  • [10]. Kumar, A., Gamma Ray Shielding Properties of PbO-Li2O-B2O3 glasses. Radiation Physics and Chemistry, 2017, 136, 50–530.
  • [11]. Parlak. Y., et al., Radiation Safety Guide: General Definitions and Radiation Protection Rules in Nuclear Medicine Applications. Nuclear Medicine Seminars, 2020, 6(2), 71–89.
  • [12]. Monte, E. G. S., For the Exposure Buildup Factors of Low and High Energies of Gamma Rays, 2009.
  • [13]. J. H. Hubbell and S. M. Seltzer, Tables of X-Ray Mass Attenuation, 1995.
  • [14]. Ünal, O., İçağa, Y. and Çoşkun, A., An Investigation of Radiation Absorption Properties of Barite Aggregate Concrete. Afyon Kocatepe University Journal of Sciences and Engineering, 2016, 16(1), 125–131.
  • [15]. Çalık, A. E. and Şirin, H., Theoretical Investigation of Half-Value Thickness of Some Construction Materials. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, 2018, 1–1.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bahar Tüysüz 0000-0001-8484-8938

Serdar Dizman 0000-0002-6511-9526

Yayımlanma Tarihi 31 Mayıs 2022
Gönderilme Tarihi 17 Temmuz 2021
Kabul Tarihi 22 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE B. Tüysüz ve S. Dizman, “Bazı Seramiklerin Radyasyon Soğurma Kapasitelerinin Belirlenmesi”, ECJSE, c. 9, sy. 2, ss. 522–531, 2022, doi: 10.31202/ecjse.972672.