Araştırma Makalesi
BibTex RIS Kaynak Göster

Z-Kaynak İnverter Kontrol Tekniklerinin Performans Analizi

Yıl 2022, Cilt: 9 Sayı: 2, 625 - 633, 31.05.2022
https://doi.org/10.31202/ecjse.990144

Öz

Bu çalışma, Z-Kaynak inverter (ZSI) devresi için kullanılan farklı kontrol tekniklerini aynı modülasyon indeksi altında karşılaştırmalı olarak incelemektedir. Geleneksel inverterlerden farklı olarak ZSI devrelerinde DC-AC güç dönüşümünde; kısa devre ilaveli basit yükseltici, maksimum yükseltici ve maksimum sabit yükseltici kontrol teknikleri kullanılmaktadır. Kontrol tekniklerinin çalışma prensipleri detaylı olarak anlatılmıştır. ZSI için her bir kontrol tekniğinde kısa devre görev oranı, yükseltme faktörü ve gerilim kazancı ilgili denklemler kullanılarak hesaplanmıştır. ZSI devre modeli ile DC-hat gerilimi ve AC çıkış gerilimlerinin benzetim çalışmaları Matlab/Simulink ortamında gerçekleştirilmiştir. Farklı kontrol tekniklerinde kullanılan ilgili denklemlere ve elde edilen benzetim sonuçlarına göre, maksimum yükseltici kontrol tekniği belirli bir modülasyon indeksi için en büyük yükseltme faktörüne ve gerilim kazancına sahiptir. Bu nedenle, maksimum yükseltici kontrol tekniği aynı şartlar altında maksimum eşdeğer DC-hat gerilimi ve AC çıkış gerilimine sahiptir. Bu kontrol tekniği en yüksek kazancın ihtiyaç duyulduğu inverter uygulamaları için kullanılabilir.

Kaynakça

  • [1]. Çınaroğlu, M. S., Şebekeye Bağlı Üç Adet Fotovoltaik Enerji Santralinin PVsyst Programı ile Analizi; Kilis Örneği, El-Cezeri, 2021, 8 (2), 675-687.
  • [2]. Akkaya, R., Kulaksiz, A. A., A microcontroller-based stand-alone photovoltaic power system for residential appliances, Applied Energy, 2004, 78(4), 419-431.
  • [3]. Engin, M., Gülersoy, T., Hibrid güç sistemleri için evirici tasarımı, Avrupa Bilim ve Teknoloji Dergisi, 2018, 14, 228-234.
  • [4]. Kabalcı, E., Review on novel single-phase grid-connected solar inverters: Circuits and control methods, Solar Energy, 2020, 198, 247-274.
  • [5]. Gupta, K. K., Ranjan, A., Bhatnagar, P., Sahu, L. K., and Jain, S., Multilevel inverter topologies with reduced device count: A review, IEEE transactions on Power Electronics, 2015, 31(1), 135-151.
  • [6]. Ellabban, O., Abu-Rub, H., Z-source inverter: Topology improvements review, IEEE Industrial Electronics Magazine, 2016, 10, 6-24.
  • [7]. Peng, F. Z., Z-source inverter, IEEE Transactions on industry applications, 2003, 39(2), 504-510.
  • [8]. Mande, D., Trovão, J. P., and Ta, M. C., Comprehensive review on main topologies of impedance source inverter used in electric vehicle applications, World Electric Vehicle Journal, 2020, 11(2), 37.
  • [9]. Hossameldin, A. A., Abdelsalam, A. K., Ibrahim, A. A., and Williams, B. W., Enhanced performance modified discontinuous PWM technique for three-phase Z-source inverter, Energies, 2020, 13(3), 578.
  • [10]. Subhani, N., Kannan, R., Mahmud, M. A., and Romlie, M. F., Performance analysis of a modernized z-source inverter for robust boost control in photovoltaic power conditioning systems, Electronics, 2019, 8(2), 139.
  • [11]. Diab, M. S., Elserougi, A. A., Massoud, A. M., Abdel-Khalik, A. S., and Ahmed, S., A pulsewidth modulation technique for high-voltage gain operation of three-phase Z-source inverters, IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 4(2), 521-533.
  • [12]. Hanif, M., Basu, M., and Gaughan, K., Understanding the operation of a Z-source inverter for photovoltaic application with a design example, IET Power Electronics, 2011, 4(3), 278-287.
  • [13]. Li, X., Xia, C., Cao, Y., Chen, W., and Shi, T., Commutation torque ripple reduction strategy of Z-source inverter fed brushless DC motor, IEEE Transactions on Power Electronics, 2016, 31(11), 7677-7690.
  • [14]. He, Y., Xu, Y., and Chen, J., New space vector modulation strategies to reduce inductor current ripple of Z-source inverter, IEEE Transactions on Power Electronics, 2017, 33(3), 2643-2654.
  • [15]. Husodo, B. Y., Ayob, S. M., and Anwari, M., Simulation of Modified Simple Boost Control for Z‐Source Inverter, International Journal of Automation and Power Engineering, 2013, 2(4), 57-64.
  • [16]. Peng, F. Z., Shen, M., and Qian, Z., Maximum boost control of the Z-source inverter, IEEE Transactions on power electronics, 2005, 20(4), 833-838.
  • [17]. Shen, M., Wang, J., Joseph, A., Peng, F. Z., Tolbert, L. M., and Adams, D. J., Maximum constant boost control of the Z-source inverter, In Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 142-147.

Performance Analysis of Z-Source Inverter Control Techniques

Yıl 2022, Cilt: 9 Sayı: 2, 625 - 633, 31.05.2022
https://doi.org/10.31202/ecjse.990144

Öz

This study presents the different control techniques of the Z-Source inverter (ZSI) and compares them for the same modulation index. Different from the traditional inverters, in ZSI circuit configurations simple boost, maximum boost, and maximum constant boost control techniques can be utilized to perform DC-AC voltage conversion with shoot-through states. The operation principles of the control techniques are explained in detail. The shoot-through duty ratio, the boost factor, and the voltage gain for each control technique of the ZSI are calculated using the related equations. The ZSI circuit model and the simulations of the DC-link and the AC output voltage are performed in Matlab/Simulink environment. According to the related equations used in the different control techniques and the obtained simulation results, the maximum boost control technique has the highest boost factor and voltage gain for a determined modulation index. For that reason, the maximum boost control technique has the maximum equivalent DC-link voltage and AC output voltage under the same conditions. This control technique can be employed for inverter applications where the highest gain is required.

Kaynakça

  • [1]. Çınaroğlu, M. S., Şebekeye Bağlı Üç Adet Fotovoltaik Enerji Santralinin PVsyst Programı ile Analizi; Kilis Örneği, El-Cezeri, 2021, 8 (2), 675-687.
  • [2]. Akkaya, R., Kulaksiz, A. A., A microcontroller-based stand-alone photovoltaic power system for residential appliances, Applied Energy, 2004, 78(4), 419-431.
  • [3]. Engin, M., Gülersoy, T., Hibrid güç sistemleri için evirici tasarımı, Avrupa Bilim ve Teknoloji Dergisi, 2018, 14, 228-234.
  • [4]. Kabalcı, E., Review on novel single-phase grid-connected solar inverters: Circuits and control methods, Solar Energy, 2020, 198, 247-274.
  • [5]. Gupta, K. K., Ranjan, A., Bhatnagar, P., Sahu, L. K., and Jain, S., Multilevel inverter topologies with reduced device count: A review, IEEE transactions on Power Electronics, 2015, 31(1), 135-151.
  • [6]. Ellabban, O., Abu-Rub, H., Z-source inverter: Topology improvements review, IEEE Industrial Electronics Magazine, 2016, 10, 6-24.
  • [7]. Peng, F. Z., Z-source inverter, IEEE Transactions on industry applications, 2003, 39(2), 504-510.
  • [8]. Mande, D., Trovão, J. P., and Ta, M. C., Comprehensive review on main topologies of impedance source inverter used in electric vehicle applications, World Electric Vehicle Journal, 2020, 11(2), 37.
  • [9]. Hossameldin, A. A., Abdelsalam, A. K., Ibrahim, A. A., and Williams, B. W., Enhanced performance modified discontinuous PWM technique for three-phase Z-source inverter, Energies, 2020, 13(3), 578.
  • [10]. Subhani, N., Kannan, R., Mahmud, M. A., and Romlie, M. F., Performance analysis of a modernized z-source inverter for robust boost control in photovoltaic power conditioning systems, Electronics, 2019, 8(2), 139.
  • [11]. Diab, M. S., Elserougi, A. A., Massoud, A. M., Abdel-Khalik, A. S., and Ahmed, S., A pulsewidth modulation technique for high-voltage gain operation of three-phase Z-source inverters, IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 4(2), 521-533.
  • [12]. Hanif, M., Basu, M., and Gaughan, K., Understanding the operation of a Z-source inverter for photovoltaic application with a design example, IET Power Electronics, 2011, 4(3), 278-287.
  • [13]. Li, X., Xia, C., Cao, Y., Chen, W., and Shi, T., Commutation torque ripple reduction strategy of Z-source inverter fed brushless DC motor, IEEE Transactions on Power Electronics, 2016, 31(11), 7677-7690.
  • [14]. He, Y., Xu, Y., and Chen, J., New space vector modulation strategies to reduce inductor current ripple of Z-source inverter, IEEE Transactions on Power Electronics, 2017, 33(3), 2643-2654.
  • [15]. Husodo, B. Y., Ayob, S. M., and Anwari, M., Simulation of Modified Simple Boost Control for Z‐Source Inverter, International Journal of Automation and Power Engineering, 2013, 2(4), 57-64.
  • [16]. Peng, F. Z., Shen, M., and Qian, Z., Maximum boost control of the Z-source inverter, IEEE Transactions on power electronics, 2005, 20(4), 833-838.
  • [17]. Shen, M., Wang, J., Joseph, A., Peng, F. Z., Tolbert, L. M., and Adams, D. J., Maximum constant boost control of the Z-source inverter, In Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 142-147.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Sacid Endiz 0000-0003-3325-5109

Ramazan Akkaya 0000-0002-6314-1500

Yayımlanma Tarihi 31 Mayıs 2022
Gönderilme Tarihi 2 Eylül 2021
Kabul Tarihi 22 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE M. S. Endiz ve R. Akkaya, “Performance Analysis of Z-Source Inverter Control Techniques”, ECJSE, c. 9, sy. 2, ss. 625–633, 2022, doi: 10.31202/ecjse.990144.

Cited By

A Control Scheme for a Quasi-Z Source Three-Phase Inverter
Gazi University Journal of Science Part A: Engineering and Innovation
https://doi.org/10.54287/gujsa.1303347