Araştırma Makalesi
BibTex RIS Kaynak Göster

Borik Asit (H3BO3) Kullanılarak Üretilen Saf Çinko ve Çinko Alaşımı (ZA27) Köpük Malzemelerin Basma Davranışlarının İncelenmesi

Yıl 2022, Cilt: 9 Sayı: 2, 656 - 668, 31.05.2022
https://doi.org/10.31202/ecjse.991967

Öz

Bu çalışmada, toz metalürjisi yöntemi kullanılarak ağırlıkça %50 boşluk oluşturucu olarak borik asit (H3BO3) ilavesiyle üretilen saf Zn ve Zn alaşımı (ZA27) köpük malzemelerin, makro yapısal ve mikro yapısal karakterizasyonu yanı sıra basma mukavemetleri araştırılmıştır. Köpük malzemelerden saf Zn köpükler, 300, 420 ve 630 MPa'lık farklı basınçlarda, Zn alaşımı köpük malzemeleri 630 MPa basınçta preslenmiş ve 70 dk boyunca 350 ° C'de sinterlenerek elde edilmişlerdir. Bu köpüklerden başarılı olarak elde edilen köpük malzemelerin 0.5 mm/dk basma hızındaki mekanik davranışları incelenmiştir. Sonuçlar, ZA27 alaşımı köpük malzeme için akma geriliminin ve plato geriliminin sırasıyla 7 MPa ve 6 MPa aralığında olduğunu göstermektedir. %40 ve %46 gözeneklilik içeren saf Zn ve ZA27 alaşımı köpük numuneleri 85 μm ve 600 μm ortalama hücre boyutlarıyla başarıyla üretilmiştir. Köpük numunelerdeki fazların morfolojisi ve kimyasal bileşimi, Taramalı Elektron Mikroskopisi (SEM), Enerji Dağılımlı X-ışını Spektroskopisi (EDX) ve X-ışını kırınımı (XRD) kullanılarak araştırılmıştır.

Destekleyen Kurum

Eskişehir Osmangazi Üniversitesi Bilimsel Araştırmalar ve Proje Yönetimi Birimi

Proje Numarası

2015-736

Teşekkür

Yazarlar Eskişehir Osmangazi Üniversitesi Bilimsel Araştırmalar ve Proje Yönetimi Birimine teşekkür eder.

Kaynakça

  • Ashby M. F., Medalist R. M., “The mechanical properties of cellular solids”, Metallurgical Transactions A, 1983, 14 (9): 1755-1769.
  • Banhart, J., “Manufacture, characterization and application of cellular metals and metal foams”, Progress in Materials Science, 2001, 46(6): 559-632.
  • Olurin, O. B., Fleck, N. A., Ashby, M. F., “Deformation and fracture of aluminium foams”, Materials Science and Engineering: A, 2000, 291(1-2): 136-146.
  • Davies, G. J., Zhen, S., “Metallic foams: their production, properties and applications”, Journal of Materials Science, 1983, 18(7):1899-1911.
  • Simone, A. E., Gibson, L. J., “Aluminum foams produced by liquid-state processes”, Acta Materialia, 1998, 46(9): 3109-3123.
  • Curran, D. C., “Aluminium foam production using calcium carbonate as a foaming agent” (Doktora Tezi), Cambridge Üniversitesi, Cambridge, Birleşik Krallık, (2004).
  • Güven, Ş., “Toz metalürjisi ve metalik köpükler”, Teknik Bilimler Dergisi, 2011, 1(2) :22-28.
  • Yavuz, İ., “Metalik Köpük Malzemeler ve Uygulama Alanları”, Taşıt Teknolojileri Elektronik Dergisi (TATED), 2 (1): 2010, 49-58.
  • Kovacik, J., Simancik, F., “Comparison of zinc and aluminium foam behaviour”, Translations-Ve Riecansky, 2004, 42(2): 80.
  • Sahu, S., Ansari, M. Z., “A study on manufacturing processes and compressive properties of zinc-aluminium metal foams”, American Journal of Materials Science, 2015, 5(3C), 38-42.
  • Kitazono, K., Takiguchi, Y., “Strain rate sensitivity and energy absorption of Zn–22Al foams”, Scripta Materialia, 2006, 55(6): 501-504.
  • Kitazono, K., Sekido, K., “Strain rate sensitivity and high temperature deformation mechanisms of cast Zn-22Al alloy foams”, Procedia Materials Science, 2014, 4:175-179.
  • Degischer, H. P., Kriszt, B. (EDX.). (2002). Handbook of cellular metals: production, processing, applications. Wiley-vch. ISBN 3-527-29320-5.
  • Astaraie, A. H., Shahverdi, H. R., Elahi, S. H., “Compressive behavior of Zn–22Al closed-cell foams under uniaxial quasi-static loading”, Transactions of Nonferrous Metals Society of China, 2015, 25(1): 162-169.
  • Kovacik, J., Jaroslav, J. E. R. Z., Simancik, F., Minarikova, N., “Coloring of Pure Zinc Foams”, Metallic Foams, 2017, 1(1): 54-59.
  • Liu, J., Yu, S., Zhu, X., Wei, M., Luo, Y., Liu, Y., “The compressive properties of closed-cell Zn-22Al foams”, Materials Letters, 2008, 62(4-5): 683-685.
  • Sahu, S., Goel, M. D., Mondal, D. P., Das, S., “High temperature compressive deformation behavior of ZA27–SiC foam”, Materials Science and Engineering: A, 2014, 607: 162-172.
  • Mondal, D. P., Goel, M. D., Bagde, N., Jha, N., Sahu, S., Barnwal, A. K., “Closed cell ZA27–SiC foam made through stir-casting technique”, Materials and Design, 2014, 57: 315-324.
  • Korpe, N.O., Dürger, N. B., Dur,D. Celikyurek, I., “Effect of compacting pressure and sintering Temperature on the properties of highly porous pure aluminum produced with boric acid (H3BO3)”, Powder Metallurgy and Metal Ceramics, 2021, 59(11): 661-671.
  • http://www.matweb.com/search/datasheet.aspx?matguid=5c017f3a462c44fa8a5eb71b2e304d96&ckck=1
  • Banhart, J., “Metal foams: production and stability”, Advanced Engineering Materials, 2006, 8(9): 781-794.
  • Banhart, J., Ashby, M., Fleck, N., “Metal foams and porous metal structures”. In Conference on Metal Foams and Porous Metal Structures, 1999, 14:16. ISBN 3-9805748-7-3.
  • Smith R. ed., “Boric Oxide, Boric Acid and Borates”, Kirk- Othmer Encyclopedia of Chemical Technology, 1990,1(4).
  • Hamada, T., Kanahashi, H., Miyoshi, T., & Kanetake, N., Effects of the strain rate and alloying on the compression characteristics of closed cell aluminum foams, Materials Transactions, 2009, 50(6):1418-1425.
  • Mukai, T., Kanahashi, H., Higashi, K., Miyoshi, T., Mabuchi, M., Nieh, T. G., “Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading”, Scripta Materialia, 1999, 40(8): 921-927.
  • Zhao, Y., Han, F., Fung, T., Optimisation of compaction and liquid-state sintering in sintering and dissolution process for manufacturing Al foams, Materials Science and Engineering: A, 2004, 364(1-2):117-125.
  • Sánchez-Martínez, A., Cruz, A., González-Nava, M., Suárez, M. A., “Main process parameters for manufacturing open-cell Zn-22Al-2Cu foams by the centrifugal infiltration route and mechanical properties”, Materials and Design, 2016, 108(3): 494-500.
  • Maizo, I.D. G., Luz, A.P., Pagliosa C., Pandolfelli V.C., “Boron sources as sintering additives for alumina-based refractory castables”, Ceramics International, 2017, 43: 10207–10216.
  • Li, Z.,Zhang,X.,Huang, P.,Hu, L.,Zu, G., “Preparation and properties of open-cell zinc foams as human bone substitute material”, China Foundry, 2019, 16: 414-422.

Investigation of the Compressive Behaviours of Pure Zinc and Zinc Alloy (ZA27) Foam Materials Produced Using Boric Acid (H3BO3)

Yıl 2022, Cilt: 9 Sayı: 2, 656 - 668, 31.05.2022
https://doi.org/10.31202/ecjse.991967

Öz

In this study, the macrostructural and microstructural characterization as well as compressive strength of pure Zn and Zn alloy (ZA27) foam materials produced by the addition of 50% boric acid (H3BO3) as a space holder by powder metallurgy method were investigated. Pure Zn foams were pressed at different pressures of 300, 420 and 630 MPa and Zn alloy foam materials pressed at 630 MPa pressure and both pure Zn and Zn alloy foam materials were sintered at 350 ° C for 70 minutes. The mechanical behaviors of the foam materials obtained successfully from these foams were investigated at a compression rate of 0,5 mm/min. The results show that for the ZA27 alloy foam material, the yield stress and plateau stress are in the range of 7 MPa and 6 MPa, respectively. Pure Zn and ZA27 alloy foam samples containing 40% and 46% porosity were successfully produced with average cell sizes of 85 μm and 600 μm, respectively. The morphology and chemical composition of the phases in the foam samples were investigated using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and X-ray diffraction (XRD).

Proje Numarası

2015-736

Kaynakça

  • Ashby M. F., Medalist R. M., “The mechanical properties of cellular solids”, Metallurgical Transactions A, 1983, 14 (9): 1755-1769.
  • Banhart, J., “Manufacture, characterization and application of cellular metals and metal foams”, Progress in Materials Science, 2001, 46(6): 559-632.
  • Olurin, O. B., Fleck, N. A., Ashby, M. F., “Deformation and fracture of aluminium foams”, Materials Science and Engineering: A, 2000, 291(1-2): 136-146.
  • Davies, G. J., Zhen, S., “Metallic foams: their production, properties and applications”, Journal of Materials Science, 1983, 18(7):1899-1911.
  • Simone, A. E., Gibson, L. J., “Aluminum foams produced by liquid-state processes”, Acta Materialia, 1998, 46(9): 3109-3123.
  • Curran, D. C., “Aluminium foam production using calcium carbonate as a foaming agent” (Doktora Tezi), Cambridge Üniversitesi, Cambridge, Birleşik Krallık, (2004).
  • Güven, Ş., “Toz metalürjisi ve metalik köpükler”, Teknik Bilimler Dergisi, 2011, 1(2) :22-28.
  • Yavuz, İ., “Metalik Köpük Malzemeler ve Uygulama Alanları”, Taşıt Teknolojileri Elektronik Dergisi (TATED), 2 (1): 2010, 49-58.
  • Kovacik, J., Simancik, F., “Comparison of zinc and aluminium foam behaviour”, Translations-Ve Riecansky, 2004, 42(2): 80.
  • Sahu, S., Ansari, M. Z., “A study on manufacturing processes and compressive properties of zinc-aluminium metal foams”, American Journal of Materials Science, 2015, 5(3C), 38-42.
  • Kitazono, K., Takiguchi, Y., “Strain rate sensitivity and energy absorption of Zn–22Al foams”, Scripta Materialia, 2006, 55(6): 501-504.
  • Kitazono, K., Sekido, K., “Strain rate sensitivity and high temperature deformation mechanisms of cast Zn-22Al alloy foams”, Procedia Materials Science, 2014, 4:175-179.
  • Degischer, H. P., Kriszt, B. (EDX.). (2002). Handbook of cellular metals: production, processing, applications. Wiley-vch. ISBN 3-527-29320-5.
  • Astaraie, A. H., Shahverdi, H. R., Elahi, S. H., “Compressive behavior of Zn–22Al closed-cell foams under uniaxial quasi-static loading”, Transactions of Nonferrous Metals Society of China, 2015, 25(1): 162-169.
  • Kovacik, J., Jaroslav, J. E. R. Z., Simancik, F., Minarikova, N., “Coloring of Pure Zinc Foams”, Metallic Foams, 2017, 1(1): 54-59.
  • Liu, J., Yu, S., Zhu, X., Wei, M., Luo, Y., Liu, Y., “The compressive properties of closed-cell Zn-22Al foams”, Materials Letters, 2008, 62(4-5): 683-685.
  • Sahu, S., Goel, M. D., Mondal, D. P., Das, S., “High temperature compressive deformation behavior of ZA27–SiC foam”, Materials Science and Engineering: A, 2014, 607: 162-172.
  • Mondal, D. P., Goel, M. D., Bagde, N., Jha, N., Sahu, S., Barnwal, A. K., “Closed cell ZA27–SiC foam made through stir-casting technique”, Materials and Design, 2014, 57: 315-324.
  • Korpe, N.O., Dürger, N. B., Dur,D. Celikyurek, I., “Effect of compacting pressure and sintering Temperature on the properties of highly porous pure aluminum produced with boric acid (H3BO3)”, Powder Metallurgy and Metal Ceramics, 2021, 59(11): 661-671.
  • http://www.matweb.com/search/datasheet.aspx?matguid=5c017f3a462c44fa8a5eb71b2e304d96&ckck=1
  • Banhart, J., “Metal foams: production and stability”, Advanced Engineering Materials, 2006, 8(9): 781-794.
  • Banhart, J., Ashby, M., Fleck, N., “Metal foams and porous metal structures”. In Conference on Metal Foams and Porous Metal Structures, 1999, 14:16. ISBN 3-9805748-7-3.
  • Smith R. ed., “Boric Oxide, Boric Acid and Borates”, Kirk- Othmer Encyclopedia of Chemical Technology, 1990,1(4).
  • Hamada, T., Kanahashi, H., Miyoshi, T., & Kanetake, N., Effects of the strain rate and alloying on the compression characteristics of closed cell aluminum foams, Materials Transactions, 2009, 50(6):1418-1425.
  • Mukai, T., Kanahashi, H., Higashi, K., Miyoshi, T., Mabuchi, M., Nieh, T. G., “Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading”, Scripta Materialia, 1999, 40(8): 921-927.
  • Zhao, Y., Han, F., Fung, T., Optimisation of compaction and liquid-state sintering in sintering and dissolution process for manufacturing Al foams, Materials Science and Engineering: A, 2004, 364(1-2):117-125.
  • Sánchez-Martínez, A., Cruz, A., González-Nava, M., Suárez, M. A., “Main process parameters for manufacturing open-cell Zn-22Al-2Cu foams by the centrifugal infiltration route and mechanical properties”, Materials and Design, 2016, 108(3): 494-500.
  • Maizo, I.D. G., Luz, A.P., Pagliosa C., Pandolfelli V.C., “Boron sources as sintering additives for alumina-based refractory castables”, Ceramics International, 2017, 43: 10207–10216.
  • Li, Z.,Zhang,X.,Huang, P.,Hu, L.,Zu, G., “Preparation and properties of open-cell zinc foams as human bone substitute material”, China Foundry, 2019, 16: 414-422.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Neşe Öztürk Körpe 0000-0002-6868-8126

Seda Kiremitci

Proje Numarası 2015-736
Yayımlanma Tarihi 31 Mayıs 2022
Gönderilme Tarihi 13 Eylül 2021
Kabul Tarihi 15 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE N. Öztürk Körpe ve S. Kiremitci, “Borik Asit (H3BO3) Kullanılarak Üretilen Saf Çinko ve Çinko Alaşımı (ZA27) Köpük Malzemelerin Basma Davranışlarının İncelenmesi”, El-Cezeri Journal of Science and Engineering, c. 9, sy. 2, ss. 656–668, 2022, doi: 10.31202/ecjse.991967.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png