Araştırma Makalesi
BibTex RIS Kaynak Göster

A Comparative Analysis of Elastic, Mechanical, and Thermoelectric Properties in Mg2Y (Y =Si, Ge and Sn) Semiconducting Nanomaterials

Yıl 2025, Cilt: 12 Sayı: 3, 283 - 297, 30.09.2025
https://doi.org/10.31202/ecjse.1695273

Öz

The elastic, mechanical, thermodynamic, and ultrasonic properties of Mg2Y (Y=Si, Ge, and Sn) composite semiconducting nanomaterials were investigated by Lennard-Jones potential analysis, which evaluated elastic coefficients in second and third order, and as per our investigation and comparative evaluation from other research works, we can conclude that for the higher orders, the elastic constants in the initial parameter increase little, but for the successor, it will barely increase towards Sn from Si with Mg2. Further, the elastic constants have been used to examine the mechanical characteristics of hexagonal Mg2Y (Y=Si, Ge, and Sn) nanomaterial via its Poisson's ratio, Young’s modulus, bulk modulus, and other relative thermodynamic properties. Here the bulk modulus is presenting an increase in comparison to their bulk moduli. The nanomaterial composition is the same from Si, Ge, and Sn and from here the calculated G/B ratio of 0.976 indicates that Mg2Y (Y=Si, Ge, and Sn) is primarily composed of ionic bonds. When computing the thermal conductivity (kmin) at different compositions, the computation outcomes have been satisfactory. As composition changes from Si, Ge, and Sn, the thermal conductivity of compositions Mg2Y (Y=Si, Ge, and Sn) increases continuously with a steady state of hardness indication. This composition, which compounds Mg2Si, Mg2Ge, and Mg2Sn has also been tested for attenuation and composition dependent ultrasonic velocities and depicted in their relative responses. This composition is at its purest at initial attenuation, and its ductility is indicated by its lowest attenuation.

Kaynakça

  • [1] V. K. Zaitsev, M.I. Fedorov, I. S. Eremin, and E. A. Gurieva, Thermoelectrics Handbook MacrotoNano, CRCPress, NewYork 2006.
  • [2] J. Tani, and H. Kido, “Impurity doping into Mg2Sn: A first-principles study,” PhysicaB Condensed Matter, vol. 407, no. 17, pp. 3493-3498, 2012 https://doi.org/10.1016/j.physb.2012.05.008.
  • [3] M. R. Kavuncu, M. Ekrem, and N. Yazıcı, “Mechanical Properties and Damage Behavior of MWCNT Reinforced Polyurethane Nanocomposites”, El-Cezeri Journal of Science and Engineering, vol. 9, no. 3, pp. 988–995, 2022, doi: 10.31202/ecjse.1018789.
  • [4] Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I. A. Nishida, and K. Masumoto, “Temperature dependence of thermoelectric properties of Mg2Si0.6Ge0.4,” Mater. Trans. JIM, vol. 33, no. 9 pp. 851–855, 1992 https://doi.org/10.2320/matertrans1989.33.851
  • [5] F. Yu, J. X. Sun, and T. H. Chen, “High-pressure phase transitions of Mg2Ge and Mg2Sn: first-principles calculations,” PhysicaB, vol 406, no. 9, pp. 1789–1794, 2011 https://doi.org/10.1016/j.physb.2011.02.029
  • [6] R. Janot, F. Cuevas, M. Latroche, and A. P. Guegan, “Influence of crystallinity on the structural and hydrogenation properties of Mg2Xphases(X=Ni,Si,Ge,Sn),” Intermetallics, vol. 14, no. 2 pp. 163–169, 2006 https://doi.org/10.1016/j.intermet.2005.05.003
  • [7] J. Prigent, and M. Gupta, “Abinitio study of the hydrogenation properties of Mg-based binary and ternary compounds Mg2X(X=Ni,Si)and YMgNi4,” J.Alloy.Compd., vol. 90, pp. 446–447, 2007 https://doi.org/10.1016/j.jallcom.2006.11.104
  • [8] W. B. Whitten, P. L. Chung, and G.C. Danielson, “Elastic constants and lattice vibration frequencies of Mg2Si,” J.Phys.Chem.Solids, vol 26, no. 1 pp. 49–56, 1965 https://doi.org/10.1016/0022-3697(65)90071-5
  • [9] P. L. Chung, W. B. Whitten, G. C. Danielson, “Lattice dynamics of Mg2Ge”, J.Phys. Chem.Solids, vol. 26, no. 12 pp.1753–1760, 1965 https://doi.org/10.1016/0022-3697(65)90206-4
  • [10] G. Murtaza, A. Sajidb, M. Rizwan, Y. Makagiwa, H. Khachai, M. Jibran, R. Khenata, and S. Bin Omran, “First principles study of Mg2X(X=Si,Ge,Sn,Pb): elastic, optoelectronic and thermoelectric properties”, Materials Science in Semiconductor Processing , vol. 40, pp. 429–435, 2015 https://doi.org/10.1016/j.mssp.2015.06.075
  • [11] J. I. Tani, and H. Kido, “Lattice dynamics of Mg2Si and Mg2Ge compounds from first principles calculations,” Comp.Mater.Sci, vol. 42, no. 3, pp. 531–536, 2008 https://doi.org/10.1016/j.commatsci.2007.08.018
  • [12] D. Zhou, J. Liu, S. Xu, and P. Peng, “Thermal stability and elastic properties of Mg2X(X =Si,Ge,Sn,Pb) phases from first-principle calculations”, Comp.Mater.Sci, vol. 51, no. 1, pp. 409–414, 2012 https://doi.org/10.1016/j.commatsci.2011.07.012
  • [13] S. Ganeshan, S. L. Shang., Y. Wang, and Z. K. Liu, “Temperature dependent elastic coefficients of Mg2X (X=Si,Ge,Sn,Pb) compounds from first-principles calculations”, J. Alloy.Compd, vol 498, no. 2, pp. 191–198, 2010 https://doi.org/10.1016/j.jallcom.2010.03.153
  • [14] S. Ganeshan, S. L. Shang, H. Zhang, Y. Wang, M. Mantina, and Z. K. Liu, “Elastic constants of binary Mg compounds from first-principles calculations”, Intermetallics, vol. 17, no. 5 pp. 313–318, 2009 https://doi.org/10.1016/j.intermet.2008.11.005
  • [15] Z. W. Huang, Y. H, Zhao, H. Hou, and P. D, Han, “Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations”, PhysicaB, vol. 407, no. 7 pp. 1075–1081, 2012 https://doi.org/10.1016/j.physb.2011.12.132
  • [16] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code”, Journal of Physics: Condensed Matter, vol. 14, no. 11 pp. 27-17, 2002 DOI 10.1088/0953-8984/14/11/301
  • [17] M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M. Fukano, and Y. Takanashi, “Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics”, Journal of Crystal Growth, vol. 304, no. 1 pp. 196-201, 2007 https://doi.org/10.1016/j.jcrysgro.2006.10.270.
  • [18] E. N. Nikitin, V. G. Bazanov, and V. I.Tarasov, Sov. Phys. Solid State
  • [19] A.V. Chernatynskiy, and S. R. Phillpot, “Anharmonic properties in Mg2X (x= C, Si, Ge, Sn, Pb) from first-principles calculations”, Phys. Rev. B, vol. 92, no. 6, pp. 064303–064309, 2015 https://doi.org/10.1103/PhysRevB.92.064303
  • [20] T. Caillat, A. Borshchevsky, and J. P. Fleurial, “Properties of single crystalline semiconducting CoSb3”, J. Appl. Phys., vol. 80, no. 8, pp. 4442, 1996. https://doi.org/10.1063/1.363405
  • [21] M. Umemoto, Y. Shirai, and K. Tsuchiya, “Proc. of the 4th Pacific Rim International Conference on Advanced Materials and Processing (PRICM4)”, The Japan Institute of Metals, pp. 2145, 2001.
  • [22] J. Tani, H. Kido, “Thermoelectric properties of Bi-doped Mg2Si semiconductors”, Physica. B, vol. 364, no. 1-4, pp. 218, 2005. https://doi.org/10.1016/j.physb.2005.04.017
  • [23] M. Iida, T. Nakamura, K. Fujimoto, Y. Yamaguchi, R. Tamura, T. Iida, and K. Nishio, “Thermoelectric Properties of Mg2Si1-x-yGexSby Prepared by Spark Plasma Sintering”, MRS Advances, no. 1, pp. 3971–3976, 2016. DOI: https://doi.org/10.1557/adv.2016.332
  • [24] M. Akasaka, T. Lida, A. Matsumoto, K. Yamanaka, Y. Takanashi, Imai, and N. Hamada, “The Thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method”, Journal of Applied Physics., vol. 104, no. 1, pp. 13703-13708, 2008, DOI:10.1063/1.2946722
  • [25] M. Ekrem, “Mechanical Properties of MWCNT Reinforced Polyvinyl Alcohol Nanofiber Mats by Electrospinnig Method”, El-Cezeri Journal of Science and Engineering, vol. 4, no. 2, pp. 190–200, 2017, doi: 10.31202/ecjse.305851.
  • [26] S. Rai, A. K. Prajapati, and P. K Yadawa, “Effect of Pressure on Elastic Constants and Related Properties of Rare-Earth Intermetallic Compound TbNiAl”, Phys Mesomech., vol. 26, no. 5, pp 495-504, 2023 https://doi.org/10.1134/S1029959923050028.
  • [27] I. Oral, and M. Ekrem, “Measurement of the elastic properties of epoxy resin/polyvinyl alcohol nanocomposites by ultrasonic wave velocities”, EXPRESS Polymer Letters, vol. 16, no. 6, pp. 591-606, 2022. DOI: 10.3144/expresspolymlett.2022.44
  • [28] C. P. Yadav, and D.K. Pandey, “Pressure dependent ultrasonic characterization of nano-structured w-BN”, Ultrasonic, vol. 96, pp 181-184, 2019 https://doi.org/10.1016/j.ultras.2019.01.008
  • [29] D. R. Clarke. “Materials selection guidelines for low thermal conductivity thermal barrier coatings”, Surf. Coat. Technol., vol. 163, pp. 67-74, 2003 https://doi.org/10.1016/S0257-8972(02)00593-5/
  • [30] A. K. Prajapati, S. Rai, and P. K. Yadawa, “Theoretical Investigations on Mechanical and Ultrasonic Characteristics of Gallium Nitride Semiconductor under High Pressure”, Emergent mater, vol. 5, pp 1985-1993, 2022 https://doi.org/10.1007/s42247-022-00419-2
  • [31] W. Voigt, Lehrbuch der kristallphysik (mitausschluss der kristalloptik), (Leipzig Berlin, B.G. Teubner), 1928.
  • [32] T. Morelli, and A. G. Slack, “High lattice thermal conductivity solids in high thermal conductivity of materials”, Goela XVIII, Springer Publisher., vol. 2, pp. 37–68, 2006
  • [33] P. K. Yadawa, D. Singh, D. K. Pandey, and R. R. Yadav, “Elastic and Acoustic Properties of Heavy Rare-Earth Metals”, The Open Acoustics Journal, vol. 2, pp. 61-67, 2009 https://doi.org/10.2174/1874837600902010061.
  • [34] D. Singh, D. K. Pandey, and P. K. Yadawa, “Ultrasonic wave propagation in rare-earth monochalcogenides”, centr.eur.j. phys. , vol. 7, pp. 198-205, 2009 https://doi.org/10.2478/s11534-008-0130-1
  • [35] R. P. Singh, S. Yadav, D. Singh, G. Mishra, “Theoretical investigation of temperature dependent elastic, thermophysical and ultrasonic properties of Sc-Ti-Zr-Hf quaternary alloy”, 2012, vol. 4, no. 1, pp. 33-40. ISSN 2581-8198.
  • [36] L. Bao, Z. Kong, D. Qu. and Y. Duan, “Revealing the elastic properties and anisotropies of Mg2X (X =Si, Ge and Sn) with different structures from a first-principles calculation”, Materials Today Communications, vol. 24, pp. 2352-4928, 2020 https://doi.org/10.1016/j.mtcomm.2020.101337
  • [37] A. Guechi, A. Merabet, M. Chegaar, A. Bouhemadou, and N. Guechi, “Pressure effect on the structural, elastic, electronic and optical properties of the Zintl phase KAsSn, first principles study”, J. Alloys Compd., vol. 623, pp. 219-228, 2015. https://doi.org/10.1016/j.jallcom.2014.10.114.
  • [38] S. I. Ranganathan, and M. Ostoja-Starzewski, “Universal Elastic Anisotropy Index.” Phys. Rev. Lett., vol. 101, pp. 9007- 9008, 2008.https://doi.org/10.1103/PhysRevLett.101.055504.
  • [39] S. P. Singh, G. Singh, A. K. Verma, P. K. Yadawa, and R. R. Yadav, “Ultrasonic wave propagation in thermoelectric ZrX2 (X= S, Se) compounds”, Pramana-J. Phys, vol. 93, pp. 83, 2019. https://doi.org/10.1007/s12043-019-1846-8.
  • [40] A. K. Jaiswal, P. K. Yadawa, and R. R. Yadav, “Ultrasonic wave propagation in ternary intermetallic CeCuGe compound”, Ultrasonics., vol. 89, pp 22-25, 2018. https://doi.org/10.1016/j.ultras.2018.04.009

Mg2Y (Y =Si, Ge ve Sn) Yarı İletken Nanomalzemelerde Elastik, Mekanik ve Termoelektrik Özelliklerin Karşılaştırmalı Analizi

Yıl 2025, Cilt: 12 Sayı: 3, 283 - 297, 30.09.2025
https://doi.org/10.31202/ecjse.1695273

Öz

Mg2Y (Y=Si, Ge ve Sn) kompozit yarı iletken nanomalzemelerin elastik, mekanik, termodinamik ve ultrasonik özellikleri, elastik katsayılarını ikinci ve üçüncü dereceden değerlendiren Lennard-Jones potansiyel analizi ile araştırılmıştır ve bizim araştırmamıza ve diğer araştırma çalışmalarından elde edilen karşılaştırmalı değerlendirmelere göre, daha yüksek dereceler için başlangıç ​​parametresindeki elastik sabitlerinin çok az arttığı, ancak halef için Si'den Mg2'ye doğru Sn'ye doğru zar zor artacağı sonucuna varabiliriz. Dahası, elastik sabitleri, Poisson oranı, Young modülü, hacim modülü ve diğer bağıl termodinamik özellikleri yoluyla hekzagonal Mg2Y (Y=Si, Ge ve Sn) nanomalzemesinin mekanik özelliklerini incelemek için kullanılmıştır. Burada hacim modülü, hacim modüllerine kıyasla bir artış göstermektedir. Nanomalzeme bileşimi Si, Ge ve Sn'den aynıdır ve buradan hesaplanan 0,976'lık G/B oranı, Mg2Y'nin (Y=Si, Ge ve Sn) öncelikle iyonik bağlardan oluştuğunu gösterir. Farklı bileşimlerde termal iletkenlik (kmin) hesaplanırken, hesaplama sonuçları tatmin edici olmuştur. Bileşim Si, Ge ve Sn'den değiştikçe, Mg2Y (Y=Si, Ge ve Sn) bileşimlerinin termal iletkenliği, sabit bir sertlik göstergesi durumuyla sürekli olarak artar. Mg2Si, Mg2Ge ve Mg2Sn'yi bileşik haline getiren bu bileşim, zayıflama ve bileşime bağlı ultrasonik hızlar için de test edilmiş ve bunların bağıl tepkilerinde tasvir edilmiştir. Bu bileşim, ilk zayıflamada en saf halindedir ve sünekliği en düşük zayıflamasıyla gösterilir.

Kaynakça

  • [1] V. K. Zaitsev, M.I. Fedorov, I. S. Eremin, and E. A. Gurieva, Thermoelectrics Handbook MacrotoNano, CRCPress, NewYork 2006.
  • [2] J. Tani, and H. Kido, “Impurity doping into Mg2Sn: A first-principles study,” PhysicaB Condensed Matter, vol. 407, no. 17, pp. 3493-3498, 2012 https://doi.org/10.1016/j.physb.2012.05.008.
  • [3] M. R. Kavuncu, M. Ekrem, and N. Yazıcı, “Mechanical Properties and Damage Behavior of MWCNT Reinforced Polyurethane Nanocomposites”, El-Cezeri Journal of Science and Engineering, vol. 9, no. 3, pp. 988–995, 2022, doi: 10.31202/ecjse.1018789.
  • [4] Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I. A. Nishida, and K. Masumoto, “Temperature dependence of thermoelectric properties of Mg2Si0.6Ge0.4,” Mater. Trans. JIM, vol. 33, no. 9 pp. 851–855, 1992 https://doi.org/10.2320/matertrans1989.33.851
  • [5] F. Yu, J. X. Sun, and T. H. Chen, “High-pressure phase transitions of Mg2Ge and Mg2Sn: first-principles calculations,” PhysicaB, vol 406, no. 9, pp. 1789–1794, 2011 https://doi.org/10.1016/j.physb.2011.02.029
  • [6] R. Janot, F. Cuevas, M. Latroche, and A. P. Guegan, “Influence of crystallinity on the structural and hydrogenation properties of Mg2Xphases(X=Ni,Si,Ge,Sn),” Intermetallics, vol. 14, no. 2 pp. 163–169, 2006 https://doi.org/10.1016/j.intermet.2005.05.003
  • [7] J. Prigent, and M. Gupta, “Abinitio study of the hydrogenation properties of Mg-based binary and ternary compounds Mg2X(X=Ni,Si)and YMgNi4,” J.Alloy.Compd., vol. 90, pp. 446–447, 2007 https://doi.org/10.1016/j.jallcom.2006.11.104
  • [8] W. B. Whitten, P. L. Chung, and G.C. Danielson, “Elastic constants and lattice vibration frequencies of Mg2Si,” J.Phys.Chem.Solids, vol 26, no. 1 pp. 49–56, 1965 https://doi.org/10.1016/0022-3697(65)90071-5
  • [9] P. L. Chung, W. B. Whitten, G. C. Danielson, “Lattice dynamics of Mg2Ge”, J.Phys. Chem.Solids, vol. 26, no. 12 pp.1753–1760, 1965 https://doi.org/10.1016/0022-3697(65)90206-4
  • [10] G. Murtaza, A. Sajidb, M. Rizwan, Y. Makagiwa, H. Khachai, M. Jibran, R. Khenata, and S. Bin Omran, “First principles study of Mg2X(X=Si,Ge,Sn,Pb): elastic, optoelectronic and thermoelectric properties”, Materials Science in Semiconductor Processing , vol. 40, pp. 429–435, 2015 https://doi.org/10.1016/j.mssp.2015.06.075
  • [11] J. I. Tani, and H. Kido, “Lattice dynamics of Mg2Si and Mg2Ge compounds from first principles calculations,” Comp.Mater.Sci, vol. 42, no. 3, pp. 531–536, 2008 https://doi.org/10.1016/j.commatsci.2007.08.018
  • [12] D. Zhou, J. Liu, S. Xu, and P. Peng, “Thermal stability and elastic properties of Mg2X(X =Si,Ge,Sn,Pb) phases from first-principle calculations”, Comp.Mater.Sci, vol. 51, no. 1, pp. 409–414, 2012 https://doi.org/10.1016/j.commatsci.2011.07.012
  • [13] S. Ganeshan, S. L. Shang., Y. Wang, and Z. K. Liu, “Temperature dependent elastic coefficients of Mg2X (X=Si,Ge,Sn,Pb) compounds from first-principles calculations”, J. Alloy.Compd, vol 498, no. 2, pp. 191–198, 2010 https://doi.org/10.1016/j.jallcom.2010.03.153
  • [14] S. Ganeshan, S. L. Shang, H. Zhang, Y. Wang, M. Mantina, and Z. K. Liu, “Elastic constants of binary Mg compounds from first-principles calculations”, Intermetallics, vol. 17, no. 5 pp. 313–318, 2009 https://doi.org/10.1016/j.intermet.2008.11.005
  • [15] Z. W. Huang, Y. H, Zhao, H. Hou, and P. D, Han, “Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations”, PhysicaB, vol. 407, no. 7 pp. 1075–1081, 2012 https://doi.org/10.1016/j.physb.2011.12.132
  • [16] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code”, Journal of Physics: Condensed Matter, vol. 14, no. 11 pp. 27-17, 2002 DOI 10.1088/0953-8984/14/11/301
  • [17] M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M. Fukano, and Y. Takanashi, “Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics”, Journal of Crystal Growth, vol. 304, no. 1 pp. 196-201, 2007 https://doi.org/10.1016/j.jcrysgro.2006.10.270.
  • [18] E. N. Nikitin, V. G. Bazanov, and V. I.Tarasov, Sov. Phys. Solid State
  • [19] A.V. Chernatynskiy, and S. R. Phillpot, “Anharmonic properties in Mg2X (x= C, Si, Ge, Sn, Pb) from first-principles calculations”, Phys. Rev. B, vol. 92, no. 6, pp. 064303–064309, 2015 https://doi.org/10.1103/PhysRevB.92.064303
  • [20] T. Caillat, A. Borshchevsky, and J. P. Fleurial, “Properties of single crystalline semiconducting CoSb3”, J. Appl. Phys., vol. 80, no. 8, pp. 4442, 1996. https://doi.org/10.1063/1.363405
  • [21] M. Umemoto, Y. Shirai, and K. Tsuchiya, “Proc. of the 4th Pacific Rim International Conference on Advanced Materials and Processing (PRICM4)”, The Japan Institute of Metals, pp. 2145, 2001.
  • [22] J. Tani, H. Kido, “Thermoelectric properties of Bi-doped Mg2Si semiconductors”, Physica. B, vol. 364, no. 1-4, pp. 218, 2005. https://doi.org/10.1016/j.physb.2005.04.017
  • [23] M. Iida, T. Nakamura, K. Fujimoto, Y. Yamaguchi, R. Tamura, T. Iida, and K. Nishio, “Thermoelectric Properties of Mg2Si1-x-yGexSby Prepared by Spark Plasma Sintering”, MRS Advances, no. 1, pp. 3971–3976, 2016. DOI: https://doi.org/10.1557/adv.2016.332
  • [24] M. Akasaka, T. Lida, A. Matsumoto, K. Yamanaka, Y. Takanashi, Imai, and N. Hamada, “The Thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method”, Journal of Applied Physics., vol. 104, no. 1, pp. 13703-13708, 2008, DOI:10.1063/1.2946722
  • [25] M. Ekrem, “Mechanical Properties of MWCNT Reinforced Polyvinyl Alcohol Nanofiber Mats by Electrospinnig Method”, El-Cezeri Journal of Science and Engineering, vol. 4, no. 2, pp. 190–200, 2017, doi: 10.31202/ecjse.305851.
  • [26] S. Rai, A. K. Prajapati, and P. K Yadawa, “Effect of Pressure on Elastic Constants and Related Properties of Rare-Earth Intermetallic Compound TbNiAl”, Phys Mesomech., vol. 26, no. 5, pp 495-504, 2023 https://doi.org/10.1134/S1029959923050028.
  • [27] I. Oral, and M. Ekrem, “Measurement of the elastic properties of epoxy resin/polyvinyl alcohol nanocomposites by ultrasonic wave velocities”, EXPRESS Polymer Letters, vol. 16, no. 6, pp. 591-606, 2022. DOI: 10.3144/expresspolymlett.2022.44
  • [28] C. P. Yadav, and D.K. Pandey, “Pressure dependent ultrasonic characterization of nano-structured w-BN”, Ultrasonic, vol. 96, pp 181-184, 2019 https://doi.org/10.1016/j.ultras.2019.01.008
  • [29] D. R. Clarke. “Materials selection guidelines for low thermal conductivity thermal barrier coatings”, Surf. Coat. Technol., vol. 163, pp. 67-74, 2003 https://doi.org/10.1016/S0257-8972(02)00593-5/
  • [30] A. K. Prajapati, S. Rai, and P. K. Yadawa, “Theoretical Investigations on Mechanical and Ultrasonic Characteristics of Gallium Nitride Semiconductor under High Pressure”, Emergent mater, vol. 5, pp 1985-1993, 2022 https://doi.org/10.1007/s42247-022-00419-2
  • [31] W. Voigt, Lehrbuch der kristallphysik (mitausschluss der kristalloptik), (Leipzig Berlin, B.G. Teubner), 1928.
  • [32] T. Morelli, and A. G. Slack, “High lattice thermal conductivity solids in high thermal conductivity of materials”, Goela XVIII, Springer Publisher., vol. 2, pp. 37–68, 2006
  • [33] P. K. Yadawa, D. Singh, D. K. Pandey, and R. R. Yadav, “Elastic and Acoustic Properties of Heavy Rare-Earth Metals”, The Open Acoustics Journal, vol. 2, pp. 61-67, 2009 https://doi.org/10.2174/1874837600902010061.
  • [34] D. Singh, D. K. Pandey, and P. K. Yadawa, “Ultrasonic wave propagation in rare-earth monochalcogenides”, centr.eur.j. phys. , vol. 7, pp. 198-205, 2009 https://doi.org/10.2478/s11534-008-0130-1
  • [35] R. P. Singh, S. Yadav, D. Singh, G. Mishra, “Theoretical investigation of temperature dependent elastic, thermophysical and ultrasonic properties of Sc-Ti-Zr-Hf quaternary alloy”, 2012, vol. 4, no. 1, pp. 33-40. ISSN 2581-8198.
  • [36] L. Bao, Z. Kong, D. Qu. and Y. Duan, “Revealing the elastic properties and anisotropies of Mg2X (X =Si, Ge and Sn) with different structures from a first-principles calculation”, Materials Today Communications, vol. 24, pp. 2352-4928, 2020 https://doi.org/10.1016/j.mtcomm.2020.101337
  • [37] A. Guechi, A. Merabet, M. Chegaar, A. Bouhemadou, and N. Guechi, “Pressure effect on the structural, elastic, electronic and optical properties of the Zintl phase KAsSn, first principles study”, J. Alloys Compd., vol. 623, pp. 219-228, 2015. https://doi.org/10.1016/j.jallcom.2014.10.114.
  • [38] S. I. Ranganathan, and M. Ostoja-Starzewski, “Universal Elastic Anisotropy Index.” Phys. Rev. Lett., vol. 101, pp. 9007- 9008, 2008.https://doi.org/10.1103/PhysRevLett.101.055504.
  • [39] S. P. Singh, G. Singh, A. K. Verma, P. K. Yadawa, and R. R. Yadav, “Ultrasonic wave propagation in thermoelectric ZrX2 (X= S, Se) compounds”, Pramana-J. Phys, vol. 93, pp. 83, 2019. https://doi.org/10.1007/s12043-019-1846-8.
  • [40] A. K. Jaiswal, P. K. Yadawa, and R. R. Yadav, “Ultrasonic wave propagation in ternary intermetallic CeCuGe compound”, Ultrasonics., vol. 89, pp 22-25, 2018. https://doi.org/10.1016/j.ultras.2018.04.009
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Uygulaması ve Eğitim (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Adwitiya Yadav 0009-0009-0978-6111

Prashant Srivastav 0000-0003-4596-6258

Pramod Yadawa 0000-0002-9525-2205

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 8 Mayıs 2025
Kabul Tarihi 19 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 3

Kaynak Göster

IEEE A. Yadav, P. Srivastav, ve P. Yadawa, “A Comparative Analysis of Elastic, Mechanical, and Thermoelectric Properties in Mg2Y (Y =Si, Ge and Sn) Semiconducting Nanomaterials”, ECJSE, c. 12, sy. 3, ss. 283–297, 2025, doi: 10.31202/ecjse.1695273.