Araştırma Makalesi
BibTex RIS Kaynak Göster

A Non-AI Homework Support Tool to Enhance Achievement and Interest in Science Education: BilgeCan Bot

Yıl 2025, Cilt: 12 Sayı: 3, 249 - 273, 30.09.2025
https://doi.org/10.31202/ecjse.1726783

Öz

Homework helps students learn and develop independent study skills, but they often need extra guidance and reliable information sources, especially in science where abstract concepts can be challenging. Traditional resources may not match students’ cognitive levels and can lead to information overload. To address this, non-AI rule-based (NARB) educational chatbots can provide focused, essential information with minimal cognitive load. This study explores the effects of BilgeCan Bot, a NARB chatbot designed to help middle school students with astronomy homework, based on Cognitive Load Theory. Conducted during the 2022–2023 academic year with 52 fifth-grade students in Türkiye, the research used an explanatory sequential mixed-methods approach. Students were divided into an experimental group using BilgeCan Bot and a control group using textbooks. Data was collected through tests, interest scales, interviews, chatbot records, and teacher feedback. Results showed that students using BilgeCan Bot achieved higher scores and had greater interest in science. They described the chatbot as effective and engaging, helping them grasp difficult concepts. Overall, the findings suggest that NARB chatbots can offer targeted, reliable support for homework in science education without overwhelming students.

Kaynakça

  • [1] L. Wang, Z. Liu, A. Liu, and F. Tao, "Artificial intelligence in product lifecycle management," Int. J. Adv. Manuf. Technol., vol. 114, no. 3–4, pp. 771–796, 2021, doi: 10.1007/s00170-021-06882-1.
  • [2] S. S. Barsoum, M. S. Elnagar, and B. M. Awad, "The effectiveness of using a cognitive style-based chatbot in developing science concepts and critical thinking skills among preparatory school pupils," Eur. Sci. J., vol. 18, no. 22, p. 52, 2022, doi: 10.19044/esj.2022.v18n22p52.
  • [3] R. Wu and Z. Yu, "Do AI chatbots improve students’ learning outcomes? Evidence from a meta-analysis," Br. J. Educ. Technol., vol. 55, no. 1, pp. 10–33, 2023, doi: 10.1111/bjet.13334.
  • [4] Y. Liang, S. Ma, and C. Lin, "Chatbotification for web information systems: A pattern-based approach," in Proc. 2022 IEEE 46th Annu. Comput., Softw. Appl. Conf. (COMPSAC), pp. 2290–2295, 2024, doi: 10.1109/compsac61105.2024.00368.
  • [5] J. Q. Perez, T. Daradoumis, and J. M. M. Puig, "Rediscovering the use of chatbots in education: A systematic literature review," Comput. Appl. Eng. Educ., vol. 28, no. 6, pp. 1549–1565, 2020, doi: 10.1002/cae.22326.
  • [6] N. L. Schroeder, O. O. Adesope, and R. B. Gilbert, "How effective are pedagogical agents for learning? A meta-analytic review," J. Educ. Comput. Res., vol. 49, no. 1, pp. 1–39, 2013, doi: 10.2190/ec.49.1.a.
  • [7] J. Schmidhuber, S. Schlogl, and C. Ploder, "Cognitive load and productivity implications in human-chatbot interaction," in Proc. 2021 IEEE 2nd Int. Conf. Human-Machine Syst. (ICHMS), pp. 1–6, 2021, doi: 10.1109/ICHMS53169.2021.9582445.
  • [8] X. Deng and Z. Yu, "A meta-analysis and systematic review of the effect of chatbot technology use in sustainable education," Sustainability, vol. 15, no. 4, p. 2940, 2023, doi: 10.3390/su15042940.
  • [9] F. R. Baskara, "Chatbots and flipped learning: Enhancing student engagement and learning outcomes through personalised support and collaboration," Int. J. Recent Educ. Res., vol. 4, no. 2, pp. 223–238, 2023, doi: 10.46245/ijorer.v4i2.331.
  • [10] F. Almasri, "Exploring the impact of artificial intelligence in teaching and learning of science: A systematic review of empirical research," Res. Sci. Educ., vol. 54, no. 5, pp. 977–997, 2024, doi: 10.1007/s11165-024-10176-3.
  • [11] V. Zenuni-Idrizi and L. Lutfiu-Kadriu, "The impact of regularly checking homework on students’ success in primary school," Univ. Teach. Educ. J., vol. 6, no. 11–12, pp. 178–183, 2024, doi: 10.62792/ut.education.v6.i11-12.p2653.
  • [12] E. N. Mutayomba, "The impact of homework on teaching and learning in secondary schools: Case of Adventist secondary schools in Goma/D.R. Congo," Int. J. Soc. Sci. Humanit. Invention, vol. 10, no. 3, pp. 7823–7831, 2023, doi: 10.18535/ijsshi/v10i03.10.
  • [13] S. B. Payne and E. Swanson, "Supporting families to motivate their middle school student during homework time," Teach. Except. Child., vol. 55, no. 6, pp. 422–430, 2022, doi: 10.1177/00400599221099656.
  • [14] L. Corno, "Homework is a complicated thing," Educ. Res., vol. 25, no. 8, pp. 27–30, 1996, doi: 10.3102/0013189x025008027.
  • [15] J. S. Stephen, "Identifying support systems and resources," in Springer Texts in Education, pp. 45–57, 2024, doi: 10.1007/978-3-031-54439-2_4.
  • [16] J. Lee, T. An, H. Chu, H. Hong, and S. N. Martin, "Improving science conceptual understanding and attitudes in elementary science classes through the development and application of a rule-based AI chatbot," Asia-Pac. Sci. Educ., vol. 9, no. 2, pp. 365–412, 2023, doi: 10.1163/23641177-bja10070.
  • [17] M. Taşcan, "The effect of science activities developed on astronomy education on fifth-grade students’ spatial skills and academic achievement," Ph.D. dissertation, İnonu Univ., 2019.
  • [18] F. Kara and N. Kefeli, "Perceptions of fifth-grade secondary school students towards the Sun, Earth, and Moon," Necatibey Fac. Educ. Electron. J. Sci. Math. Educ., vol. 13, no. 2, pp. 1000–1014, 2019, doi: 10.17522/balikesirnef.560113.
  • [19] N. Demir, "The effect of the 5E learning model on seventh-grade students’ academic achievement and attitudes in teaching astronomy topics," Ph.D. dissertation, Erciyes Univ., 2020.
  • [20] J. Xu, "Why do students have difficulties completing homework? The need for homework management," J. Educ. Train. Stud., vol. 1, no. 1, 2013, doi: 10.11114/jets.v1i1.78.
  • [21] A. Dhanani, "Using search engines in the teaching and learning process," PEOPLE: Int. J. Soc. Sci., vol. 6, no. 1, pp. 682– 689, 2020, doi: 10.20319/PIJSS.2020.61.682689.
  • [22] S. Abbasi, H. Kazi, and N. N. Hussaini, "Effect of chatbot systems on students' learning outcomes," Sylwan, vol. 163, no. 10, pp. 49–63, 2019. [Online]. Available: https://www.researchgate.net/publication/336373880_Effect_of_Chatbot_Systems_on_Student's_Learning_Outcomes
  • [23] B. A. Shawar and E. Atwell, "Chatbots: Are they really useful?" J. Lang. Technol. Comput. Linguist., vol. 22, no. 1, pp. 29– 49, 2007. [Online]. Available: https://jlcl.org/article/download/88/86
  • [24] S. S. Shaffie, M. F. Omardin, S. R. Ismail, A. A. Rahman, I. M. Ibrahim, and A. F. Najmuddin, "Attending teaching and learning with chatbot," Int. J. Acad. Res. Prog. Educ. Dev., vol. 13, no. 1, 2024, doi: 10.6007/ijarped/v13-i1/21107.
  • [25] C. W. Okonkwo and A. Ade-Ibijola, "Chatbots applications in education: A systematic review," Comput. Educ.: Artif. Intell., vol. 2, p. 100033, 2021, doi: 10.1016/j.caeai.2021.100033.
  • [26] H.-A. Bekkar and Y. Chtouki, "Chatbots in education: A systematic literature review," in Proc. IEEE Int. Conf. Syst., Commun. Coding, pp. 637–644, 2024, doi: 10.1109/icscc62041.2024.10690334.
  • [27] E. Loos, L. Ivan, and D. Leu, "“Save the Pacific Northwest tree octopus”: a hoax revisited. Or: How vulnerable are school children to fake news?" Inf. Learn. Sci., vol. 119, no. 9/10, pp. 514–528, 2018.
  • [28] B. Lund, W. Ting, N. R. Mannuru, B. Nie, S. Shimray, and Z. Wang, "ChatGPT and a new academic reality: AI-written research papers and the ethics of the large language models in scholarly publishing," SSRN Electron. J., 2023, doi: 10.2139/ssrn.4389887.
  • [29] E. Feigerlova, H. Hani, and E. Hothersall-Davies, "A systematic review of the impact of artificial intelligence on educational outcomes in health professions education," BMC Med. Educ., vol. 25, no. 1, 2025, doi: 10.1186/s12909-025-06719-5.
  • [30] C. Papakostas, C. Troussas, A. Krouska, and C. Sgouropoulou, "A rule-based chatbot offering personalized guidance in computer programming education," in Lect. Notes Comput. Sci., pp. 253–264, 2024, doi: 10.1007/978-3-031-63031-6_22.
  • [31] J. Sweller, "Cognitive load during problem solving: Effects on learning," Cogn. Sci., vol. 12, no. 2, pp. 257–285, 1988, doi: 10.1016/0364-0213(88)90023-7.
  • [32] F. Paas, A. Renkl, and J. Sweller, "Cognitive load theory and instructional design: Recent developments," Educ. Psychol., vol. 38, no. 1, pp. 1–4, 2003, doi: 10.1207/s15326985ep3801_1.
  • [33] J. Weizenbaum, "ELIZA—A computer program for the study of natural language communication between man and machine," 1966. [Online]. Available: https://web.stanford.edu/class/cs124/p36-weizenabaum.pdf
  • [34] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed. Pearson Education, Inc., 1995.
  • [35] J. Yin, T. Goh, and Y. Hu, "Interactions with educational chatbots: The impact of induced emotions and students’ learning motivation," Int. J. Educ. Technol. High. Educ., vol. 21, no. 1, 2024, doi: 10.1186/s41239-024-00480-3.
  • [36] H. Guldal and E. O. Dincer, "Can rule-based educational chatbots be an acceptable alternative for students in higher education?" Educ. Inf. Technol., 2024, doi: 10.1007/s10639-024-12977-5.
  • [37] M. Černy, "Educational psychology aspects of learning with chatbots without artificial intelligence: Suggestions for designers," Eur. J. Invest. Health Psychol. Educ., vol. 13, no. 2, pp. 284–305, 2023, doi: 10.3390/ejihpe13020022.
  • [38] O. V. Deryugina, "Chatterbots," Sci. Tech. Inf. Process., vol. 37, no. 2, pp. 143–147, 2010, doi: 10.3103/s0147688210020097.
  • [39] S. Roos, "Chatbots in education: A passing trend or a valuable pedagogical tool?" M.S. thesis, 2018. [Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355054
  • [40] Y. V. Lakshmi and I. Majid, "Chatbots in the education system," Univ. News: A Wkly. J. High. Educ., vol. 60, no. 8, pp. 15– 18, 2022. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4039535
  • [41] İ. Ozkol, K. Doğan, and G. Koseali, "Artificial intelligence supported chatbot usage in ERMS applications," 2019. [Online]. Available: https://www.researchgate.net/publication/338336314_EBYS_Uygulamalarinda_Yapay_Zeka_Destekli_Chatbot_Sohbet _Robotu_Kullanimi_-_Artificial_Intelligence_Supported_Chatbot_Usage_in_ERMS_Applications
  • [42] L. C. Klopfenstein, S. Delpriori, S. Malatini, and A. Bogliolo, "The rise of bots: A survey of conversational interfaces, patterns, and paradigms," in Proc. 2017 Conf. Designing Interactive Systems, pp. 555–565, 2017. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3064663.3064672
  • [43] S. Hussain, O. A. Sianaki, and N. Ababneh, "A survey on conversational agents/chatbots classification and design techniques," in Adv. Intell. Syst. Comput., pp. 946–956, 2019, doi: 10.1007/978-3-030-15035-8_93.
  • [44] H. Chen, X. Liu, D. Yin, and J. Tang, "A survey on dialogue systems," ACM SIGKDD Explor. Newsl., vol. 19, no. 2, pp. 25– 35, 2017, doi: 10.1145/3166054.3166058.
  • [45] E. Adamopoulou and L. Moussiades, "Chatbots: History, technology, and applications," Mach. Learn. Appl., vol. 2, p. 100006, 2020, doi: 10.1016/j.mlwa.2020.100006.
  • [46] D. Madhu, C. J. N. Jain, E. Sebastain, S. Shaji, and A. Ajayakumar, "A novel approach for medical assistance using trained chatbot," in Proc. 2017 Int. Conf. Inventive Commun. Comput. Technol. (ICICCT), pp. 243–246, 2017, doi: 10.1109/ICICCT.2017.7975195.
  • [47] K. F. Hew, W. Huang, J. Du, and C. Jia, "Using chatbots to support student goal setting and social presence in fully online activities: Learner engagement and perceptions," J. Comput. High. Educ., vol. 35, no. 1, pp. 40–68, 2023, doi: 10.1007/s12528-022-09338-x.
  • [48] S. A. Abdul-Kader and J. Woods, "Survey on chatbot design techniques in speech conversation systems," Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 7, 2015, doi: 10.14569/ijacsa.2015.060712.
  • [49] A. Badii, A. Adetoye, D. Patel, and K. Hameed, "Efficient FPGA−Based Regular Expression Pattern Matching," 2015.
  • [50] L. Bradeško and D. Mladenić, "A survey of chatbot systems through a Loebner Prize competition," in Proc. Slovenian Lang. Technol. Soc. 8th Conf. Lang. Technol., vol. 2, pp. 34–37, 2012. [Online]. Available: https://nl.ijs.si/isjt12/proceedings/isjt2012_06.pdf
  • [51] R. Moreno and R. Mayer, "Interactive multimodal learning environments," Educ. Psychol. Rev., vol. 19, no. 3, pp. 309–326, 2007, doi: 10.1007/s10648-007-9047-2.
  • [52] C. Wu, Y. Li, H. Yang, X. Wang, X. Li, and B. Jing, "The greater the interaction, the stronger the learning performance? Examining pedagogical agents’ interactive presence in instructional videos," Appl. Cogn. Psychol., vol. 38, no. 5, 2024, doi: 10.1002/acp.4242.
  • [53] P. Ayres and F. Paas, "Cognitive load theory: New directions and challenges," Appl. Cogn. Psychol., vol. 26, no. 6, pp. 827– 832, 2012, doi: 10.1002/acp.2882.
  • [54] R. Winkler and M. Sollner, "Unleashing the potential of chatbots in education: A state-of-the-art analysis," Acad. Manag. Proc., vol. 2018, no. 1, p. 15903, 2018, doi: 10.5465/ambpp.2018.15903abstract.
  • [55] P. A. Kirschner, J. Sweller, and R. E. Clark, "Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching," Educ. Psychol., vol. 41, no. 2, pp. 75–86, 2006, doi: 10.1207/s15326985ep4102_1.
  • [56] B. K. Mungai, P. K. K. Omieno, M. Egessa, and P. N. Manyara, "AI chatbots in LMS: A pedagogical review of cognitive, constructivist, and adaptive principles," Eng. Technol. J., vol. 9, no. 8, 2024, doi: 10.47191/etj/v9i08.15.
  • [57] J. Sweller, P. Ayres, and S. Kalyuga, Cognitive Load Theory. Springer New York, 2011, doi: 10.1007/978-1-4419-8126-4.
  • [58] J. J. G. Van Merrienboer and J. Sweller, "Cognitive load theory and complex learning: Recent developments and future directions," Educ. Psychol. Rev., vol. 17, no. 2, pp. 147–177, 2005, doi: 10.1007/s10648-005-3951-0.
  • [59] S. Gumilar, "Conceptual understanding and visual representation: Are they still ordinary or extraordinary issues?" Res. Phys. Educ., vol. 2, no. 2, pp. 1–2, 2023, doi: 10.31980/ripe.v2i2.29.
  • [60] S. Mi, S. Lu, and H. Bi, "Trends and foundations in research on students’ conceptual understanding in science education: A method based on the structural topic model," J. Baltic Sci. Educ., vol. 19, no. 4, pp. 551–568, 2020, doi: 10.33225/JBSE/20.19.551.
  • [61] X. Huang, "Application of artificial intelligence app in quality evaluation of primary school science education," Educ. Stud., vol. 50, no. 6, pp. 1215–1235, 2022, doi: 10.1080/03055698.2022.2066462.
  • [62] J. P. Adams and T. F. Slater, "Astronomy in the national science education standards," J. Geosci. Educ., vol. 48, no. 1, pp. 39–45, 2000, doi: 10.5408/1089-9995-48.1.39.
  • [63] P. Hubber, "Year 8 students’ understanding of astronomy as a representational issue: Insights from a classroom video study," 2009. [Online]. Available: http://dro.deakin.edu.au/eserv/DU:30021664/rentschler-year8students-2009.pdf
  • [64] P. M. Sadler, "Astronomy’s conceptual hierarchy," in Astronomy Education: Current Developments, Future Coordination (ASP Conf. Ser., Vol. 89), J. R. Percy, Ed., p. 46, 1996.
  • [65] E. Gazit, D. Chen, and Y. Yair, "Developing understanding of basic astronomical concepts by using a virtual solar system," in Proc. Int. Conf. Learn. Sci., p. 601, 2004. [Online]. Available: https://repository.isls.org/handle/1/4019
  • [66] M. A. Kuhail, N. Alturki, S. Alramlawi, and K. Alhejori, "Interacting with educational chatbots: A systematic review," Educ. Inf. Technol., vol. 28, no. 1, pp. 973–1018, 2023, doi: 10.1007/s10639-022-11177-3.
  • [67] S. Wollny, J. Schneider, D. Di Mitri, J. Weidlich, M. Rittberger, and H. Drachsler, "Are we there yet? A systematic literature review on chatbots in education," Front. Artif. Intell., vol. 4, p. 654924, 2021, doi: 10.3389/frai.2021.654924.
  • [68] P. Chandler and J. Sweller, "Cognitive load theory and the format of instruction," Cogn. Instr., vol. 8, no. 4, pp. 293–332, 1991, doi: 10.1207/s1532690xci0804_2.
  • [69] N. D. Septiyanti, M. I. Luthfi, and D. Darmawansah, "Effect of chatbot-assisted learning on students’ learning motivation and its pedagogical approaches," Khazanah Informatika: J. Ilmu Komput. Informatika, vol. 10, no. 1, pp. 69–77, 2024, doi: 10.23917/khif.v10i1.4246.
  • [70] H. Cooper, "Synthesis of research on homework," Educ. Leadersh., vol. 47, no. 3, pp. 85–91, 1989. [Online]. Available: https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el198911_cooper.pdf
  • [71] U. Trautwein, A. Niggli, I. Schnyder, and O. Ludtke, "Between-teacher differences in homework assignments and the development of students’ homework effort, homework emotions, and achievement," J. Educ. Psychol., vol. 101, no. 1, pp. 176–189, 2009, doi: 10.1037/0022-0663.101.1.176.
  • [72] E. Guven Yıldırım and A. N. Koklukaya, "Determination of primary and middle school students' interest levels in science subjects," Amasya Univ. J. Educ. Fac., vol. 5, no. 1, pp. 1–22, 2016. [Online]. Available: https://dergipark.org.tr/en/pub/amauefd/issue/24319/257699
  • [73] R. Mintz, S. Litvak, and Y. Yair, "3D-virtual reality in science education: An implication for astronomy teaching," J. Comput. Math. Sci. Teach., vol. 20, no. 3, pp. 293–305, 2001. [Online]. Available: https://www.academia.edu/download/31690325/JCMST203293.pdf
  • [74] H. Cooper, J. C. Robinson, and E. A. Patall, "Does homework improve academic achievement? A synthesis of research, 1987–2003," Rev. Educ. Res., vol. 76, no. 1, pp. 1–62, 2006, doi: 10.3102/00346543076001001.
  • [75] S. Dettmers, U. Trautwein, and O. Ludtke, "The relationship between homework time and achievement is not universal: Evidence from multilevel analyses in 40 countries," Sch. Eff. Sch. Improv., vol. 20, no. 4, pp. 375–405, 2009, doi: 10.1080/09243450902904601.
  • [76] J. Xu and H. Wu, "Self-regulation of homework behavior: Homework management at the secondary school level," J. Educ. Res., vol. 106, no. 1, pp. 1–13, 2012, doi: 10.1080/00220671.2012.658457.
  • [77] J. Hattie and H. Timperley, "The power of feedback," Rev. Educ. Res., vol. 77, no. 1, pp. 81–112, 2007, doi: 10.3102/003465430298487.
  • [78] D. C. Moos and A. Ringdal, "Self-regulated learning in the classroom: A literature review on the teacher’s role," Educ. Res. Int., vol. 2012, pp. 1–15, 2012, doi: 10.1155/2012/423284.
  • [79] K. A. Renninger and S. Hidi, "Interest development and learning," in Cambridge University Press eBooks, pp. 265–290, 2019, doi: 10.1017/9781316823279.013.
  • [80] A. Kuzmin, A. Dukhanov, and S. Kraev, "Approach to intelligent support in educational program design using X-matrices and a domain-specific language," in Proc. 2022 Int. Russ. Autom. Conf. (RusAutoCon), pp. 920–925, 2024, doi: 10.1109/rusautocon61949.2024.10694424.
  • [81] Y. Lin and J. Ye, "Development of an educational chatbot system for enhancing students’ biology learning performance," J. Internet Technol., vol. 24, no. 2, pp. 275–281, 2023, doi: 10.53106/160792642023032402006.
  • [82] R. Chocarro, M. Cortinas, and G. Marcos-Matas, "Teachers’ attitudes towards chatbots in education: A technology acceptance model approach considering the effect of social language, bot proactiveness, and users’ characteristics," Educ. Stud., vol. 49, no. 2, pp. 295–313, 2021, doi: 10.1080/03055698.2020.1850426.
  • [83] A. S. Al Darayseh, "Acceptance of artificial intelligence in teaching science: Science teachers’ perspective," Comput. Educ.: Artif. Intell., vol. 4, p. 100132, 2023, doi: 10.1016/j.caeai.2023.100132.
  • [84] F. T. M. Ayasrah, K. Alarabi, and H. A. A. Fattah, "A secure technology environment and AI's effect on science teaching: Prospective science teachers," Migration Lett., vol. 20, no. S2, pp. 289–302, 2023. [Online]. Available: https://migrationletters.com/index.php/ml/article/view/3687
  • [85] B. Kohli, T. Choudhury, S. Sharma, and P. Kumar, "A platform for human-chatbot interaction using Python," IEEE Xplore, 2018, doi: 10.1109/ICGCIoT.2018.8753031.
  • [86] O. A. Mehdi, H. Ibrahim, and L. S. Affendey, "Instance-based matching using regular expression," Procedia Comput. Sci., vol. 10, pp. 688–695, 2012, doi: 10.1016/j.procs.2012.06.088.
  • [87] M. McTear, Z. Callejas, and D. Griol, The Conversational Interface. Springer, 2016, doi: 10.1007/978-3-319-32967-3.
  • [88] S. Toraman, "Mixed methods research: A brief history, definitions, perspectives, and key elements," Qual. Soc. Sci., vol. 3, no. 1, pp. 1–29, 2021, doi: 10.47105/nsb.847688.
  • [89] L. Cohen, L. Manion, and K. Morrison, Research Methods in Education, 6th ed. London: Routledge, 2007.
  • [90] J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 2nd ed. Thousand Oaks, CA: Sage, 2003.
  • [91] Ş. Buyukozturk, Handbook of Data Analysis for Social Sciences: Statistics and Research Design. Ankara: Pegem Academy, 2018.
  • [92] J. M. Cortina, "What is coefficient alpha? An examination of theory and applications," J. Appl. Psychol., vol. 78, no. 1, pp. 98–104, 1993, doi: 10.1037/0021-9010.78.1.98.
  • [93] J. C. Nunnally and I. H. Bernstein, Psychometric Theory, 3rd ed. New York: McGraw-Hill, 1994.
  • [94] K. S. Taber, "The use of Cronbach’s alpha when developing and reporting research instruments in science education," Res. Sci. Educ., vol. 48, no. 6, pp. 1273–1296, 2018, doi: 10.1007/s11165-016-9602-2.
  • [95] M. F. Turgut, Measurement and Evaluation in Education, 9th ed. Ankara: Saydam, 1992.
  • [96] C. Lacin Şimşek and H. Nuhoğlu, "Development of a valid and reliable interest scale towards science topics," Sakarya Univ. J. Educ. Fac., no. 18, pp. 28–41, 2009. [Online]. Available: https://dergipark.org.tr/en/pub/sakaefd/issue/11214/133927
  • [97] E. Ş. Karalar, "Investigation of middle school students' interest in science subjects in terms of various variables," M.S. thesis, Muğla Sıtkı Kocman Univ., 2018.
  • [98] H. Kendirli, "The effect of Educational Informatics Network (EBA)-supported science applications on seventh-grade students' interest in science," M.S. thesis, Niğde Omer Halisdemir Univ., 2017.
  • [99] F. Şimşek, "The effect of STEM activities on students’ attitudes, interest, scientific process skills in science and student opinions," Turk. J. Comput. Math. Educ., vol. 10, no. 3, pp. 654–679, 2019, doi: 10.16949/turkbilmat.470261.
  • [100] M. B. Miles and A. M. Huberman, Qualitative Data Analysis: An Expanded Sourcebook, 2nd ed. Sage Publications, 1994.
  • [101] J. R. Landis and G. G. Koch, "The measurement of observer agreement for categorical data," Biometrics, vol. 33, no. 1, p. 159, 1977, doi: 10.2307/2529310.
  • [102] K. Krippendorff, "On the reliability of unitizing continuous data," Sociol. Methodol., pp. 47–76, 1995.
  • [103] J. Fraenkel, N. Wallen, and H. Hyun, How to Design and Evaluate Research in Education, 10th ed. New York: McGraw- Hill Education, 1993.
  • [104] J. Pallant, SPSS Survival Manual: A Step-by-Step Guide to Data Analysis Using IBM SPSS, 6th ed. New York: Open University Press, 2016.
  • [105] V. Sonmez and G. F. Alacapınar, Illustrated Scientific Research Methods. Ankara: Anı Publishing, 2019.
  • [106] A. Yıldırım and H. Şimşek, Qualitative Research Methods in the Social Sciences, 5th ed. Ankara: Seckin, 2006.
  • [107] V. Clarke and V. Braun, "Thematic analysis," J. Positive Psychol., vol. 12, no. 3, pp. 297–298, 2016, doi: 10.1080/17439760.2016.1262613.
  • [108] Ş. Buyukozturk, Handbook of Data Analysis for Social Sciences: Statistics, Research Design, SPSS Applications, and Interpretation. Ankara: Pegem Academy, 2014.
  • [109] B. G. Tabachnick and L. S. Fidell, Using Multivariate Statistics, 7th ed. New York: Allyn & Bacon/Pearson Education, 2013.
  • [110] J. T. E. Richardson, "Eta squared and partial eta squared as measures of effect size in educational research," Educ. Res. Rev., vol. 6, no. 2, pp. 135–147, 2011, doi: 10.1016/j.edurev.2010.12.001.
  • [111] J. Yin, T.-T. Goh, and Y. Hu, "Using a chatbot to provide formative feedback: A longitudinal study of intrinsic motivation, cognitive load, and learning performance," IEEE Trans. Learn. Technol., vol. 17, pp. 1404–1415, 2024, doi: 10.1109/tlt.2024.3364015.
  • [112] Q. N. Nguyen, A. Sidorova, and R. Torres, "User interactions with chatbot interfaces vs. menu-based interfaces: An empirical study," Comput. Human Behav., vol. 128, p. 107093, 2021, doi: 10.1016/j.chb.2021.107093.
  • [113] S. Park, "The effects of social cue principles on cognitive load, situational interest, motivation, and achievement in pedagogical agent multimedia learning," Educ. Technol. Soc., vol. 18, no. 4, pp. 211–229, 2015.
  • [114] N. L. Schroeder, "The influence of a pedagogical agent on learners’ cognitive load," Educ. Technol. Soc., vol. 20, no. 4, pp. 138–147, 2017.
  • [115] A. L. Baylor, "Expanding pre-service teachers’ metacognitive awareness of instructional planning through pedagogical agents," Educ. Technol. Res. Dev., vol. 50, no. 2, pp. 5–22, 2002.
  • [116] Y. Wang and C. Lo, "The effects of response time on older and young adults’ interaction experience with chatbot," BMC Psychol., vol. 13, no. 1, 2025, doi: 10.1186/s40359-025-02459-9.
  • [117] B. Chen, G.-H. Hwang, and S.-H. Wang, "Gender differences in cognitive load when applying game-based learning with intelligent robots," Educ. Technol. Soc., vol. 24, no. 3, pp. 102–115, 2021, doi: 10.30191/ETS.202107_24(3).0008.
  • [118] C. D. D. Bowman, "Student use of animated pedagogical agents in a middle school science inquiry program," Br. J. Educ. Technol., vol. 43, no. 3, pp. 359–375, 2011, doi: 10.1111/j.1467-8535.2011.01198.x.
  • [119] S. Dincer and A. Doğanay, "The effects of multiple-pedagogical agents on learners’ academic success, motivation, and cognitive load," Comput. Educ., vol. 111, pp. 74–100, 2017, doi: 10.1016/j.compedu.2017.04.005.
  • [120] M. A. S. N. Nunes, L. L. Dihl, L. M. Fraga, C. R. Woszezenki, L. Oliveira, D. J. Francisco, and M. Notargiacomo, "Animated pedagogical agent in the intelligent virtual teaching environment," Interact. Educ. Multimedia, vol. 4, pp. 53– 60, 2002.
  • [121] F. S. Al-Hafdi and S. M. AlNajdi, "The effectiveness of using chatbot-based environment on learning process, students’ performances and perceptions: A mixed exploratory study," Educ. Inf. Technol., vol. 29, no. 15, pp. 20633–20664, 2024, doi: 10.1007/s10639-024-12671-6.
  • [122] S. Sakellariou, A. Molohidis, and E. Hatzikraniotis, "On the effectiveness of pedagogical agents," Int. J. Teach. Learn. Sci. (IJTLS-102), 2024, doi: 10.47991/2024/IJTLS-102.
  • [123] R. E. Mayer and L. Fiorella, The Cambridge Handbook of Multimedia Learning. Cambridge University Press, 2022.
  • [124] R. E. Mayer and R. Moreno, "Nine ways to reduce cognitive load in multimedia learning," Educ. Psychol., vol. 38, no. 1, pp. 43–52, 2003, doi: 10.1207/S15326985EP3801_6.
  • [125] S. Ba, D. Stein, Q. Liu, T. Long, K. Xie, and L. Wu, "Examining the effects of a pedagogical agent with dual-channel emotional cues on learner emotions, cognitive load, and knowledge transfer performance," J. Educ. Comput. Res., vol. 59, no. 6, pp. 1114–1134, 2021, doi: 10.1177/0735633121992421.
  • [126] A. Brandt, M. P. Jensen, M. S. Soberg, S. D. Andersen, and T. Sund, "Information and communication technology-based assistive technology to compensate for impaired cognition in everyday life: A systematic review," Disabil. Rehabil.: Assist. Technol., vol. 15, no. 7, pp. 810–824, 2020, doi: 10.1080/17483107.2020.1765032.

BilgeCan Bot: Fen Eğitiminde Başarıyı ve İlgiyi Artırmaya Yönelik Yapay Zeka Destekli Olmayan Bir Ödev Destek Aracı

Yıl 2025, Cilt: 12 Sayı: 3, 249 - 273, 30.09.2025
https://doi.org/10.31202/ecjse.1726783

Öz

Ev ödevleri, öğrencilerin bağımsız çalışma becerilerini öğrenmelerine ve geliştirmelerine yardımcı olur, ancak özellikle soyut kavramların zorlayıcı olabileceği fen bilimlerinde genellikle ekstra rehberliğe ve güvenilir bilgi kaynaklarına ihtiyaç duyarlar. Geleneksel kaynaklar öğrencilerin bilişsel seviyelerine uymayabilir ve aşırı bilgi yüklenmesine yol açabilir. Bunu ele almak için, yapay zeka dışı kural tabanlı (NARB) eğitim sohbet robotları, minimum bilişsel yük ile odaklanmış, temel bilgiler sağlayabilir. Bu çalışma, Bilişsel Yük Teorisine dayalı olarak ortaokul öğrencilerine astronomi ödevlerinde yardımcı olmak için tasarlanmış bir NARB sohbet robotu olan BilgeCan Bot'un etkilerini araştırmaktadır. 2022-2023 eğitim-öğretim yılında Türkiye'de 52 beşinci sınıf öğrencisiyle yürütülen araştırmada açıklayıcı sıralı karma yöntem yaklaşımı kullanılmıştır. Öğrenciler BilgeCan Bot'un kullanıldığı deney grubu ve ders kitaplarının kullanıldığı kontrol grubu olarak ayrılmıştır. Veriler testler, ilgi ölçekleri, görüşmeler, chatbot kayıtları ve öğretmen geri bildirimleri yoluyla toplanmıştır. Sonuçlar, BilgeCan Bot kullanan öğrencilerin daha yüksek puanlar elde ettiğini ve fene daha fazla ilgi duyduğunu gösterdi. Öğrenciler, sohbet robotunu etkili ve ilgi çekici olarak tanımladılar ve zor kavramları anlamalarına yardımcı olduğunu belirttiler. Genel olarak bulgular, NARB chatbotlarının fen eğitiminde öğrencileri bunaltmadan ev ödevleri için hedefli ve güvenilir destek sunabileceğini göstermektedir.

Kaynakça

  • [1] L. Wang, Z. Liu, A. Liu, and F. Tao, "Artificial intelligence in product lifecycle management," Int. J. Adv. Manuf. Technol., vol. 114, no. 3–4, pp. 771–796, 2021, doi: 10.1007/s00170-021-06882-1.
  • [2] S. S. Barsoum, M. S. Elnagar, and B. M. Awad, "The effectiveness of using a cognitive style-based chatbot in developing science concepts and critical thinking skills among preparatory school pupils," Eur. Sci. J., vol. 18, no. 22, p. 52, 2022, doi: 10.19044/esj.2022.v18n22p52.
  • [3] R. Wu and Z. Yu, "Do AI chatbots improve students’ learning outcomes? Evidence from a meta-analysis," Br. J. Educ. Technol., vol. 55, no. 1, pp. 10–33, 2023, doi: 10.1111/bjet.13334.
  • [4] Y. Liang, S. Ma, and C. Lin, "Chatbotification for web information systems: A pattern-based approach," in Proc. 2022 IEEE 46th Annu. Comput., Softw. Appl. Conf. (COMPSAC), pp. 2290–2295, 2024, doi: 10.1109/compsac61105.2024.00368.
  • [5] J. Q. Perez, T. Daradoumis, and J. M. M. Puig, "Rediscovering the use of chatbots in education: A systematic literature review," Comput. Appl. Eng. Educ., vol. 28, no. 6, pp. 1549–1565, 2020, doi: 10.1002/cae.22326.
  • [6] N. L. Schroeder, O. O. Adesope, and R. B. Gilbert, "How effective are pedagogical agents for learning? A meta-analytic review," J. Educ. Comput. Res., vol. 49, no. 1, pp. 1–39, 2013, doi: 10.2190/ec.49.1.a.
  • [7] J. Schmidhuber, S. Schlogl, and C. Ploder, "Cognitive load and productivity implications in human-chatbot interaction," in Proc. 2021 IEEE 2nd Int. Conf. Human-Machine Syst. (ICHMS), pp. 1–6, 2021, doi: 10.1109/ICHMS53169.2021.9582445.
  • [8] X. Deng and Z. Yu, "A meta-analysis and systematic review of the effect of chatbot technology use in sustainable education," Sustainability, vol. 15, no. 4, p. 2940, 2023, doi: 10.3390/su15042940.
  • [9] F. R. Baskara, "Chatbots and flipped learning: Enhancing student engagement and learning outcomes through personalised support and collaboration," Int. J. Recent Educ. Res., vol. 4, no. 2, pp. 223–238, 2023, doi: 10.46245/ijorer.v4i2.331.
  • [10] F. Almasri, "Exploring the impact of artificial intelligence in teaching and learning of science: A systematic review of empirical research," Res. Sci. Educ., vol. 54, no. 5, pp. 977–997, 2024, doi: 10.1007/s11165-024-10176-3.
  • [11] V. Zenuni-Idrizi and L. Lutfiu-Kadriu, "The impact of regularly checking homework on students’ success in primary school," Univ. Teach. Educ. J., vol. 6, no. 11–12, pp. 178–183, 2024, doi: 10.62792/ut.education.v6.i11-12.p2653.
  • [12] E. N. Mutayomba, "The impact of homework on teaching and learning in secondary schools: Case of Adventist secondary schools in Goma/D.R. Congo," Int. J. Soc. Sci. Humanit. Invention, vol. 10, no. 3, pp. 7823–7831, 2023, doi: 10.18535/ijsshi/v10i03.10.
  • [13] S. B. Payne and E. Swanson, "Supporting families to motivate their middle school student during homework time," Teach. Except. Child., vol. 55, no. 6, pp. 422–430, 2022, doi: 10.1177/00400599221099656.
  • [14] L. Corno, "Homework is a complicated thing," Educ. Res., vol. 25, no. 8, pp. 27–30, 1996, doi: 10.3102/0013189x025008027.
  • [15] J. S. Stephen, "Identifying support systems and resources," in Springer Texts in Education, pp. 45–57, 2024, doi: 10.1007/978-3-031-54439-2_4.
  • [16] J. Lee, T. An, H. Chu, H. Hong, and S. N. Martin, "Improving science conceptual understanding and attitudes in elementary science classes through the development and application of a rule-based AI chatbot," Asia-Pac. Sci. Educ., vol. 9, no. 2, pp. 365–412, 2023, doi: 10.1163/23641177-bja10070.
  • [17] M. Taşcan, "The effect of science activities developed on astronomy education on fifth-grade students’ spatial skills and academic achievement," Ph.D. dissertation, İnonu Univ., 2019.
  • [18] F. Kara and N. Kefeli, "Perceptions of fifth-grade secondary school students towards the Sun, Earth, and Moon," Necatibey Fac. Educ. Electron. J. Sci. Math. Educ., vol. 13, no. 2, pp. 1000–1014, 2019, doi: 10.17522/balikesirnef.560113.
  • [19] N. Demir, "The effect of the 5E learning model on seventh-grade students’ academic achievement and attitudes in teaching astronomy topics," Ph.D. dissertation, Erciyes Univ., 2020.
  • [20] J. Xu, "Why do students have difficulties completing homework? The need for homework management," J. Educ. Train. Stud., vol. 1, no. 1, 2013, doi: 10.11114/jets.v1i1.78.
  • [21] A. Dhanani, "Using search engines in the teaching and learning process," PEOPLE: Int. J. Soc. Sci., vol. 6, no. 1, pp. 682– 689, 2020, doi: 10.20319/PIJSS.2020.61.682689.
  • [22] S. Abbasi, H. Kazi, and N. N. Hussaini, "Effect of chatbot systems on students' learning outcomes," Sylwan, vol. 163, no. 10, pp. 49–63, 2019. [Online]. Available: https://www.researchgate.net/publication/336373880_Effect_of_Chatbot_Systems_on_Student's_Learning_Outcomes
  • [23] B. A. Shawar and E. Atwell, "Chatbots: Are they really useful?" J. Lang. Technol. Comput. Linguist., vol. 22, no. 1, pp. 29– 49, 2007. [Online]. Available: https://jlcl.org/article/download/88/86
  • [24] S. S. Shaffie, M. F. Omardin, S. R. Ismail, A. A. Rahman, I. M. Ibrahim, and A. F. Najmuddin, "Attending teaching and learning with chatbot," Int. J. Acad. Res. Prog. Educ. Dev., vol. 13, no. 1, 2024, doi: 10.6007/ijarped/v13-i1/21107.
  • [25] C. W. Okonkwo and A. Ade-Ibijola, "Chatbots applications in education: A systematic review," Comput. Educ.: Artif. Intell., vol. 2, p. 100033, 2021, doi: 10.1016/j.caeai.2021.100033.
  • [26] H.-A. Bekkar and Y. Chtouki, "Chatbots in education: A systematic literature review," in Proc. IEEE Int. Conf. Syst., Commun. Coding, pp. 637–644, 2024, doi: 10.1109/icscc62041.2024.10690334.
  • [27] E. Loos, L. Ivan, and D. Leu, "“Save the Pacific Northwest tree octopus”: a hoax revisited. Or: How vulnerable are school children to fake news?" Inf. Learn. Sci., vol. 119, no. 9/10, pp. 514–528, 2018.
  • [28] B. Lund, W. Ting, N. R. Mannuru, B. Nie, S. Shimray, and Z. Wang, "ChatGPT and a new academic reality: AI-written research papers and the ethics of the large language models in scholarly publishing," SSRN Electron. J., 2023, doi: 10.2139/ssrn.4389887.
  • [29] E. Feigerlova, H. Hani, and E. Hothersall-Davies, "A systematic review of the impact of artificial intelligence on educational outcomes in health professions education," BMC Med. Educ., vol. 25, no. 1, 2025, doi: 10.1186/s12909-025-06719-5.
  • [30] C. Papakostas, C. Troussas, A. Krouska, and C. Sgouropoulou, "A rule-based chatbot offering personalized guidance in computer programming education," in Lect. Notes Comput. Sci., pp. 253–264, 2024, doi: 10.1007/978-3-031-63031-6_22.
  • [31] J. Sweller, "Cognitive load during problem solving: Effects on learning," Cogn. Sci., vol. 12, no. 2, pp. 257–285, 1988, doi: 10.1016/0364-0213(88)90023-7.
  • [32] F. Paas, A. Renkl, and J. Sweller, "Cognitive load theory and instructional design: Recent developments," Educ. Psychol., vol. 38, no. 1, pp. 1–4, 2003, doi: 10.1207/s15326985ep3801_1.
  • [33] J. Weizenbaum, "ELIZA—A computer program for the study of natural language communication between man and machine," 1966. [Online]. Available: https://web.stanford.edu/class/cs124/p36-weizenabaum.pdf
  • [34] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed. Pearson Education, Inc., 1995.
  • [35] J. Yin, T. Goh, and Y. Hu, "Interactions with educational chatbots: The impact of induced emotions and students’ learning motivation," Int. J. Educ. Technol. High. Educ., vol. 21, no. 1, 2024, doi: 10.1186/s41239-024-00480-3.
  • [36] H. Guldal and E. O. Dincer, "Can rule-based educational chatbots be an acceptable alternative for students in higher education?" Educ. Inf. Technol., 2024, doi: 10.1007/s10639-024-12977-5.
  • [37] M. Černy, "Educational psychology aspects of learning with chatbots without artificial intelligence: Suggestions for designers," Eur. J. Invest. Health Psychol. Educ., vol. 13, no. 2, pp. 284–305, 2023, doi: 10.3390/ejihpe13020022.
  • [38] O. V. Deryugina, "Chatterbots," Sci. Tech. Inf. Process., vol. 37, no. 2, pp. 143–147, 2010, doi: 10.3103/s0147688210020097.
  • [39] S. Roos, "Chatbots in education: A passing trend or a valuable pedagogical tool?" M.S. thesis, 2018. [Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355054
  • [40] Y. V. Lakshmi and I. Majid, "Chatbots in the education system," Univ. News: A Wkly. J. High. Educ., vol. 60, no. 8, pp. 15– 18, 2022. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4039535
  • [41] İ. Ozkol, K. Doğan, and G. Koseali, "Artificial intelligence supported chatbot usage in ERMS applications," 2019. [Online]. Available: https://www.researchgate.net/publication/338336314_EBYS_Uygulamalarinda_Yapay_Zeka_Destekli_Chatbot_Sohbet _Robotu_Kullanimi_-_Artificial_Intelligence_Supported_Chatbot_Usage_in_ERMS_Applications
  • [42] L. C. Klopfenstein, S. Delpriori, S. Malatini, and A. Bogliolo, "The rise of bots: A survey of conversational interfaces, patterns, and paradigms," in Proc. 2017 Conf. Designing Interactive Systems, pp. 555–565, 2017. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3064663.3064672
  • [43] S. Hussain, O. A. Sianaki, and N. Ababneh, "A survey on conversational agents/chatbots classification and design techniques," in Adv. Intell. Syst. Comput., pp. 946–956, 2019, doi: 10.1007/978-3-030-15035-8_93.
  • [44] H. Chen, X. Liu, D. Yin, and J. Tang, "A survey on dialogue systems," ACM SIGKDD Explor. Newsl., vol. 19, no. 2, pp. 25– 35, 2017, doi: 10.1145/3166054.3166058.
  • [45] E. Adamopoulou and L. Moussiades, "Chatbots: History, technology, and applications," Mach. Learn. Appl., vol. 2, p. 100006, 2020, doi: 10.1016/j.mlwa.2020.100006.
  • [46] D. Madhu, C. J. N. Jain, E. Sebastain, S. Shaji, and A. Ajayakumar, "A novel approach for medical assistance using trained chatbot," in Proc. 2017 Int. Conf. Inventive Commun. Comput. Technol. (ICICCT), pp. 243–246, 2017, doi: 10.1109/ICICCT.2017.7975195.
  • [47] K. F. Hew, W. Huang, J. Du, and C. Jia, "Using chatbots to support student goal setting and social presence in fully online activities: Learner engagement and perceptions," J. Comput. High. Educ., vol. 35, no. 1, pp. 40–68, 2023, doi: 10.1007/s12528-022-09338-x.
  • [48] S. A. Abdul-Kader and J. Woods, "Survey on chatbot design techniques in speech conversation systems," Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 7, 2015, doi: 10.14569/ijacsa.2015.060712.
  • [49] A. Badii, A. Adetoye, D. Patel, and K. Hameed, "Efficient FPGA−Based Regular Expression Pattern Matching," 2015.
  • [50] L. Bradeško and D. Mladenić, "A survey of chatbot systems through a Loebner Prize competition," in Proc. Slovenian Lang. Technol. Soc. 8th Conf. Lang. Technol., vol. 2, pp. 34–37, 2012. [Online]. Available: https://nl.ijs.si/isjt12/proceedings/isjt2012_06.pdf
  • [51] R. Moreno and R. Mayer, "Interactive multimodal learning environments," Educ. Psychol. Rev., vol. 19, no. 3, pp. 309–326, 2007, doi: 10.1007/s10648-007-9047-2.
  • [52] C. Wu, Y. Li, H. Yang, X. Wang, X. Li, and B. Jing, "The greater the interaction, the stronger the learning performance? Examining pedagogical agents’ interactive presence in instructional videos," Appl. Cogn. Psychol., vol. 38, no. 5, 2024, doi: 10.1002/acp.4242.
  • [53] P. Ayres and F. Paas, "Cognitive load theory: New directions and challenges," Appl. Cogn. Psychol., vol. 26, no. 6, pp. 827– 832, 2012, doi: 10.1002/acp.2882.
  • [54] R. Winkler and M. Sollner, "Unleashing the potential of chatbots in education: A state-of-the-art analysis," Acad. Manag. Proc., vol. 2018, no. 1, p. 15903, 2018, doi: 10.5465/ambpp.2018.15903abstract.
  • [55] P. A. Kirschner, J. Sweller, and R. E. Clark, "Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching," Educ. Psychol., vol. 41, no. 2, pp. 75–86, 2006, doi: 10.1207/s15326985ep4102_1.
  • [56] B. K. Mungai, P. K. K. Omieno, M. Egessa, and P. N. Manyara, "AI chatbots in LMS: A pedagogical review of cognitive, constructivist, and adaptive principles," Eng. Technol. J., vol. 9, no. 8, 2024, doi: 10.47191/etj/v9i08.15.
  • [57] J. Sweller, P. Ayres, and S. Kalyuga, Cognitive Load Theory. Springer New York, 2011, doi: 10.1007/978-1-4419-8126-4.
  • [58] J. J. G. Van Merrienboer and J. Sweller, "Cognitive load theory and complex learning: Recent developments and future directions," Educ. Psychol. Rev., vol. 17, no. 2, pp. 147–177, 2005, doi: 10.1007/s10648-005-3951-0.
  • [59] S. Gumilar, "Conceptual understanding and visual representation: Are they still ordinary or extraordinary issues?" Res. Phys. Educ., vol. 2, no. 2, pp. 1–2, 2023, doi: 10.31980/ripe.v2i2.29.
  • [60] S. Mi, S. Lu, and H. Bi, "Trends and foundations in research on students’ conceptual understanding in science education: A method based on the structural topic model," J. Baltic Sci. Educ., vol. 19, no. 4, pp. 551–568, 2020, doi: 10.33225/JBSE/20.19.551.
  • [61] X. Huang, "Application of artificial intelligence app in quality evaluation of primary school science education," Educ. Stud., vol. 50, no. 6, pp. 1215–1235, 2022, doi: 10.1080/03055698.2022.2066462.
  • [62] J. P. Adams and T. F. Slater, "Astronomy in the national science education standards," J. Geosci. Educ., vol. 48, no. 1, pp. 39–45, 2000, doi: 10.5408/1089-9995-48.1.39.
  • [63] P. Hubber, "Year 8 students’ understanding of astronomy as a representational issue: Insights from a classroom video study," 2009. [Online]. Available: http://dro.deakin.edu.au/eserv/DU:30021664/rentschler-year8students-2009.pdf
  • [64] P. M. Sadler, "Astronomy’s conceptual hierarchy," in Astronomy Education: Current Developments, Future Coordination (ASP Conf. Ser., Vol. 89), J. R. Percy, Ed., p. 46, 1996.
  • [65] E. Gazit, D. Chen, and Y. Yair, "Developing understanding of basic astronomical concepts by using a virtual solar system," in Proc. Int. Conf. Learn. Sci., p. 601, 2004. [Online]. Available: https://repository.isls.org/handle/1/4019
  • [66] M. A. Kuhail, N. Alturki, S. Alramlawi, and K. Alhejori, "Interacting with educational chatbots: A systematic review," Educ. Inf. Technol., vol. 28, no. 1, pp. 973–1018, 2023, doi: 10.1007/s10639-022-11177-3.
  • [67] S. Wollny, J. Schneider, D. Di Mitri, J. Weidlich, M. Rittberger, and H. Drachsler, "Are we there yet? A systematic literature review on chatbots in education," Front. Artif. Intell., vol. 4, p. 654924, 2021, doi: 10.3389/frai.2021.654924.
  • [68] P. Chandler and J. Sweller, "Cognitive load theory and the format of instruction," Cogn. Instr., vol. 8, no. 4, pp. 293–332, 1991, doi: 10.1207/s1532690xci0804_2.
  • [69] N. D. Septiyanti, M. I. Luthfi, and D. Darmawansah, "Effect of chatbot-assisted learning on students’ learning motivation and its pedagogical approaches," Khazanah Informatika: J. Ilmu Komput. Informatika, vol. 10, no. 1, pp. 69–77, 2024, doi: 10.23917/khif.v10i1.4246.
  • [70] H. Cooper, "Synthesis of research on homework," Educ. Leadersh., vol. 47, no. 3, pp. 85–91, 1989. [Online]. Available: https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el198911_cooper.pdf
  • [71] U. Trautwein, A. Niggli, I. Schnyder, and O. Ludtke, "Between-teacher differences in homework assignments and the development of students’ homework effort, homework emotions, and achievement," J. Educ. Psychol., vol. 101, no. 1, pp. 176–189, 2009, doi: 10.1037/0022-0663.101.1.176.
  • [72] E. Guven Yıldırım and A. N. Koklukaya, "Determination of primary and middle school students' interest levels in science subjects," Amasya Univ. J. Educ. Fac., vol. 5, no. 1, pp. 1–22, 2016. [Online]. Available: https://dergipark.org.tr/en/pub/amauefd/issue/24319/257699
  • [73] R. Mintz, S. Litvak, and Y. Yair, "3D-virtual reality in science education: An implication for astronomy teaching," J. Comput. Math. Sci. Teach., vol. 20, no. 3, pp. 293–305, 2001. [Online]. Available: https://www.academia.edu/download/31690325/JCMST203293.pdf
  • [74] H. Cooper, J. C. Robinson, and E. A. Patall, "Does homework improve academic achievement? A synthesis of research, 1987–2003," Rev. Educ. Res., vol. 76, no. 1, pp. 1–62, 2006, doi: 10.3102/00346543076001001.
  • [75] S. Dettmers, U. Trautwein, and O. Ludtke, "The relationship between homework time and achievement is not universal: Evidence from multilevel analyses in 40 countries," Sch. Eff. Sch. Improv., vol. 20, no. 4, pp. 375–405, 2009, doi: 10.1080/09243450902904601.
  • [76] J. Xu and H. Wu, "Self-regulation of homework behavior: Homework management at the secondary school level," J. Educ. Res., vol. 106, no. 1, pp. 1–13, 2012, doi: 10.1080/00220671.2012.658457.
  • [77] J. Hattie and H. Timperley, "The power of feedback," Rev. Educ. Res., vol. 77, no. 1, pp. 81–112, 2007, doi: 10.3102/003465430298487.
  • [78] D. C. Moos and A. Ringdal, "Self-regulated learning in the classroom: A literature review on the teacher’s role," Educ. Res. Int., vol. 2012, pp. 1–15, 2012, doi: 10.1155/2012/423284.
  • [79] K. A. Renninger and S. Hidi, "Interest development and learning," in Cambridge University Press eBooks, pp. 265–290, 2019, doi: 10.1017/9781316823279.013.
  • [80] A. Kuzmin, A. Dukhanov, and S. Kraev, "Approach to intelligent support in educational program design using X-matrices and a domain-specific language," in Proc. 2022 Int. Russ. Autom. Conf. (RusAutoCon), pp. 920–925, 2024, doi: 10.1109/rusautocon61949.2024.10694424.
  • [81] Y. Lin and J. Ye, "Development of an educational chatbot system for enhancing students’ biology learning performance," J. Internet Technol., vol. 24, no. 2, pp. 275–281, 2023, doi: 10.53106/160792642023032402006.
  • [82] R. Chocarro, M. Cortinas, and G. Marcos-Matas, "Teachers’ attitudes towards chatbots in education: A technology acceptance model approach considering the effect of social language, bot proactiveness, and users’ characteristics," Educ. Stud., vol. 49, no. 2, pp. 295–313, 2021, doi: 10.1080/03055698.2020.1850426.
  • [83] A. S. Al Darayseh, "Acceptance of artificial intelligence in teaching science: Science teachers’ perspective," Comput. Educ.: Artif. Intell., vol. 4, p. 100132, 2023, doi: 10.1016/j.caeai.2023.100132.
  • [84] F. T. M. Ayasrah, K. Alarabi, and H. A. A. Fattah, "A secure technology environment and AI's effect on science teaching: Prospective science teachers," Migration Lett., vol. 20, no. S2, pp. 289–302, 2023. [Online]. Available: https://migrationletters.com/index.php/ml/article/view/3687
  • [85] B. Kohli, T. Choudhury, S. Sharma, and P. Kumar, "A platform for human-chatbot interaction using Python," IEEE Xplore, 2018, doi: 10.1109/ICGCIoT.2018.8753031.
  • [86] O. A. Mehdi, H. Ibrahim, and L. S. Affendey, "Instance-based matching using regular expression," Procedia Comput. Sci., vol. 10, pp. 688–695, 2012, doi: 10.1016/j.procs.2012.06.088.
  • [87] M. McTear, Z. Callejas, and D. Griol, The Conversational Interface. Springer, 2016, doi: 10.1007/978-3-319-32967-3.
  • [88] S. Toraman, "Mixed methods research: A brief history, definitions, perspectives, and key elements," Qual. Soc. Sci., vol. 3, no. 1, pp. 1–29, 2021, doi: 10.47105/nsb.847688.
  • [89] L. Cohen, L. Manion, and K. Morrison, Research Methods in Education, 6th ed. London: Routledge, 2007.
  • [90] J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 2nd ed. Thousand Oaks, CA: Sage, 2003.
  • [91] Ş. Buyukozturk, Handbook of Data Analysis for Social Sciences: Statistics and Research Design. Ankara: Pegem Academy, 2018.
  • [92] J. M. Cortina, "What is coefficient alpha? An examination of theory and applications," J. Appl. Psychol., vol. 78, no. 1, pp. 98–104, 1993, doi: 10.1037/0021-9010.78.1.98.
  • [93] J. C. Nunnally and I. H. Bernstein, Psychometric Theory, 3rd ed. New York: McGraw-Hill, 1994.
  • [94] K. S. Taber, "The use of Cronbach’s alpha when developing and reporting research instruments in science education," Res. Sci. Educ., vol. 48, no. 6, pp. 1273–1296, 2018, doi: 10.1007/s11165-016-9602-2.
  • [95] M. F. Turgut, Measurement and Evaluation in Education, 9th ed. Ankara: Saydam, 1992.
  • [96] C. Lacin Şimşek and H. Nuhoğlu, "Development of a valid and reliable interest scale towards science topics," Sakarya Univ. J. Educ. Fac., no. 18, pp. 28–41, 2009. [Online]. Available: https://dergipark.org.tr/en/pub/sakaefd/issue/11214/133927
  • [97] E. Ş. Karalar, "Investigation of middle school students' interest in science subjects in terms of various variables," M.S. thesis, Muğla Sıtkı Kocman Univ., 2018.
  • [98] H. Kendirli, "The effect of Educational Informatics Network (EBA)-supported science applications on seventh-grade students' interest in science," M.S. thesis, Niğde Omer Halisdemir Univ., 2017.
  • [99] F. Şimşek, "The effect of STEM activities on students’ attitudes, interest, scientific process skills in science and student opinions," Turk. J. Comput. Math. Educ., vol. 10, no. 3, pp. 654–679, 2019, doi: 10.16949/turkbilmat.470261.
  • [100] M. B. Miles and A. M. Huberman, Qualitative Data Analysis: An Expanded Sourcebook, 2nd ed. Sage Publications, 1994.
  • [101] J. R. Landis and G. G. Koch, "The measurement of observer agreement for categorical data," Biometrics, vol. 33, no. 1, p. 159, 1977, doi: 10.2307/2529310.
  • [102] K. Krippendorff, "On the reliability of unitizing continuous data," Sociol. Methodol., pp. 47–76, 1995.
  • [103] J. Fraenkel, N. Wallen, and H. Hyun, How to Design and Evaluate Research in Education, 10th ed. New York: McGraw- Hill Education, 1993.
  • [104] J. Pallant, SPSS Survival Manual: A Step-by-Step Guide to Data Analysis Using IBM SPSS, 6th ed. New York: Open University Press, 2016.
  • [105] V. Sonmez and G. F. Alacapınar, Illustrated Scientific Research Methods. Ankara: Anı Publishing, 2019.
  • [106] A. Yıldırım and H. Şimşek, Qualitative Research Methods in the Social Sciences, 5th ed. Ankara: Seckin, 2006.
  • [107] V. Clarke and V. Braun, "Thematic analysis," J. Positive Psychol., vol. 12, no. 3, pp. 297–298, 2016, doi: 10.1080/17439760.2016.1262613.
  • [108] Ş. Buyukozturk, Handbook of Data Analysis for Social Sciences: Statistics, Research Design, SPSS Applications, and Interpretation. Ankara: Pegem Academy, 2014.
  • [109] B. G. Tabachnick and L. S. Fidell, Using Multivariate Statistics, 7th ed. New York: Allyn & Bacon/Pearson Education, 2013.
  • [110] J. T. E. Richardson, "Eta squared and partial eta squared as measures of effect size in educational research," Educ. Res. Rev., vol. 6, no. 2, pp. 135–147, 2011, doi: 10.1016/j.edurev.2010.12.001.
  • [111] J. Yin, T.-T. Goh, and Y. Hu, "Using a chatbot to provide formative feedback: A longitudinal study of intrinsic motivation, cognitive load, and learning performance," IEEE Trans. Learn. Technol., vol. 17, pp. 1404–1415, 2024, doi: 10.1109/tlt.2024.3364015.
  • [112] Q. N. Nguyen, A. Sidorova, and R. Torres, "User interactions with chatbot interfaces vs. menu-based interfaces: An empirical study," Comput. Human Behav., vol. 128, p. 107093, 2021, doi: 10.1016/j.chb.2021.107093.
  • [113] S. Park, "The effects of social cue principles on cognitive load, situational interest, motivation, and achievement in pedagogical agent multimedia learning," Educ. Technol. Soc., vol. 18, no. 4, pp. 211–229, 2015.
  • [114] N. L. Schroeder, "The influence of a pedagogical agent on learners’ cognitive load," Educ. Technol. Soc., vol. 20, no. 4, pp. 138–147, 2017.
  • [115] A. L. Baylor, "Expanding pre-service teachers’ metacognitive awareness of instructional planning through pedagogical agents," Educ. Technol. Res. Dev., vol. 50, no. 2, pp. 5–22, 2002.
  • [116] Y. Wang and C. Lo, "The effects of response time on older and young adults’ interaction experience with chatbot," BMC Psychol., vol. 13, no. 1, 2025, doi: 10.1186/s40359-025-02459-9.
  • [117] B. Chen, G.-H. Hwang, and S.-H. Wang, "Gender differences in cognitive load when applying game-based learning with intelligent robots," Educ. Technol. Soc., vol. 24, no. 3, pp. 102–115, 2021, doi: 10.30191/ETS.202107_24(3).0008.
  • [118] C. D. D. Bowman, "Student use of animated pedagogical agents in a middle school science inquiry program," Br. J. Educ. Technol., vol. 43, no. 3, pp. 359–375, 2011, doi: 10.1111/j.1467-8535.2011.01198.x.
  • [119] S. Dincer and A. Doğanay, "The effects of multiple-pedagogical agents on learners’ academic success, motivation, and cognitive load," Comput. Educ., vol. 111, pp. 74–100, 2017, doi: 10.1016/j.compedu.2017.04.005.
  • [120] M. A. S. N. Nunes, L. L. Dihl, L. M. Fraga, C. R. Woszezenki, L. Oliveira, D. J. Francisco, and M. Notargiacomo, "Animated pedagogical agent in the intelligent virtual teaching environment," Interact. Educ. Multimedia, vol. 4, pp. 53– 60, 2002.
  • [121] F. S. Al-Hafdi and S. M. AlNajdi, "The effectiveness of using chatbot-based environment on learning process, students’ performances and perceptions: A mixed exploratory study," Educ. Inf. Technol., vol. 29, no. 15, pp. 20633–20664, 2024, doi: 10.1007/s10639-024-12671-6.
  • [122] S. Sakellariou, A. Molohidis, and E. Hatzikraniotis, "On the effectiveness of pedagogical agents," Int. J. Teach. Learn. Sci. (IJTLS-102), 2024, doi: 10.47991/2024/IJTLS-102.
  • [123] R. E. Mayer and L. Fiorella, The Cambridge Handbook of Multimedia Learning. Cambridge University Press, 2022.
  • [124] R. E. Mayer and R. Moreno, "Nine ways to reduce cognitive load in multimedia learning," Educ. Psychol., vol. 38, no. 1, pp. 43–52, 2003, doi: 10.1207/S15326985EP3801_6.
  • [125] S. Ba, D. Stein, Q. Liu, T. Long, K. Xie, and L. Wu, "Examining the effects of a pedagogical agent with dual-channel emotional cues on learner emotions, cognitive load, and knowledge transfer performance," J. Educ. Comput. Res., vol. 59, no. 6, pp. 1114–1134, 2021, doi: 10.1177/0735633121992421.
  • [126] A. Brandt, M. P. Jensen, M. S. Soberg, S. D. Andersen, and T. Sund, "Information and communication technology-based assistive technology to compensate for impaired cognition in everyday life: A systematic review," Disabil. Rehabil.: Assist. Technol., vol. 15, no. 7, pp. 810–824, 2020, doi: 10.1080/17483107.2020.1765032.
Toplam 126 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Uygulaması ve Eğitim (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Taner Yılmaz 0000-0003-1164-3549

İlbilge Dökme 0000-0003-0227-6193

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 25 Haziran 2025
Kabul Tarihi 8 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 3

Kaynak Göster

IEEE T. Yılmaz ve İ. Dökme, “A Non-AI Homework Support Tool to Enhance Achievement and Interest in Science Education: BilgeCan Bot”, ECJSE, c. 12, sy. 3, ss. 249–273, 2025, doi: 10.31202/ecjse.1726783.