Review
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 2, 25 - 29
https://doi.org/10.55147/efse.1479642

Abstract

References

  • Akan, T. (2006). Maddenin 4. hali plazma ve temel özellikleri. Elektronik Çağdaş Fizik Dergisi, 4(1), 1-10. (Turkish)
  • Albayrak, A., & Kılıç, G. B. (2020). Application of plasma technology in food processing. Turkish Journal of Agriculture-Food Science and Technology, 8(11), 2300-2306. doi:10.24925/turjaf.v8i11.2300-2306.3134
  • Aydın, Ö. Ş., Birlik, P. M., & Şahan, Y. (2023). Soğuk plazma uygulamasının gıda bileşenleri üzerine etkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 37(2), 477-498. (Turkish).
  • Baier M., Görgen M., Fröhling A., Herppich W. B., Ehlbeck, J., Knorr, D., &Schlüter, O. (2012). Fresh produce decontamination by an atmospheric pressure plasma-jet. In Proceedings of the 11th International Congress on Engineering and Food ICEF(3), 1-5.
  • Bozkurt, D. (2014). Effects of cold plasma treatment on vitamins and polyphenol oxidase (PPO) enzyme activity. Ph.D Thesis, Hacettepe University Institute of Science, Ankara.
  • Cavagnaro, P. F., Camargo, A., Galmarini, C. R., & Simon, P. W. (2007). Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. Journal of Agricultural and Food Chemistry, 55(4), 1280-1288. doi:10.1021/jf062587s.
  • Çınar, K. (2011). Design and construction of a microwave plasma ion source. Ph.D Thesis, Middle East Technical University Institute of Science, Ankara.
  • Çoruhlu, T. (2017). Tarım Sektöründe Soğuk Atmosferik Plazma Teknolojilerinin Kullanımı. İleri Teknolojiler V. Çalıştayı, 1-10, İstanbul. (Turkish).
  • Ekezie, F. G. C., Sun , D. W., & Cheng , J. H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology, 69, 46-58. doi:10.1016/j.tifs.2017.08.007.
  • Güleç , H. A. (2012). Gıda endüstrisinde ısıl olmayan plazma teknolojileri. Gıda, 37(5), 295-302. (Turkish).
  • Kasar, H. (2022). Use of microwave plasma technology in food/catering sector: The case of dried mantı production. Ph.D Thesis, Karamanoğlu Mehmetbey University Institute of Social Sciences, Karaman.
  • Kasar, H., Süleyman, G., & Çağlar, A. (2021). Mikrodalga plazmanın ve infrared radyosyanların gıdalarda ve yemek sanayinde kullanımı. Novel Gıdalar, Medıhealt Academy Yayıncılık.
  • Kim, J. S., Lee, E. J., Cho, E. A., & Kim, Y. J. (2013). Inactivation of Campylobacter jejuni using radio-frequency atmospheric pressure plasma on agar plates and chicken hams. Korean Journal for Food Science of Animal Resources, 33(3), 317-324. doi:10.5851/kosfa.2013.33.3.317.
  • Konak, Ü. İ., Certel, M., & Helh, S. (2009). Gıda sanayisinde mikrodalga uygulamaları. Gıda Teknolojileri Elektronik Dergisi, 4(3), 20-31. (Turkish).
  • Kumar, V., Pulpytel, J., Giudetti, G., Rauscher, H., Rossi, F., & ArefiKhonsari, F. (2011). Amphiphilic copolymer coatings via plasma polymerisation process: Switching and anti‐biofouling characteristics. Plasma Processes and Polymers, 8(5), 373-385. doi:10.1002/ppap.201000109.
  • Kuşlu, S., & Bayramoğlu, M. (2011). Mikrodalgalar ile materyaller arasındaki termal olan ve olmayan etkileşimlerin incelenmesi ve mikrodalga kimyası. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(3), 395-405. (Turkish).
  • Laroussi, M. (2005). Low temperature plasma‐based sterilization: Overview and state‐of‐the‐art. Plasma processes and polymers, 2(5), 391-400. doi:10.1002/ppap.200400078.
  • Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and Applied Chemistry, 74(3), 349-358. doi:10.1351/pac200274030349.
  • Oliveira, M., & Franca, A. (2002). Microwave heating of foodstuffs. Journal of Food Engineering(53), 347-359. doi:10.1016/S0260-8774(01)00176-5.
  • Özer, P., Görgüç, A., & Yılmaz, F. M. (2018). Mikrodalga teknolojisinin bitkisel dokulardan makro ve mikro bileşenlerin özütlenmesinde kullanımı. GIDA/The Journal of Food, 43(5), 765-775. doi:10.15237/gida.GD18060.
  • Pankaja, S., Bueno-Ferrer, C., Misra, N., Milosavljevic, V., O’Donnell, C., Bourke, P., & Cullen, P. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 35(1), 5-17. doi:10.1016/j.tifs.2013.10.009.
  • Reçber, D., Kayserilioğlu, B., Koçum, İ. C., & Serdaroğlu, D. Ç. (2018). Medikal plazma tabanlı mikrocerrahi cihazında donanımsal özellikler ve yapılandırılma. Tıp Teknolojileri Kongresi, 226-230. Gazi Magosa / KKTC.
  • Sarghini, S., Paulussen, S., & Terryn, H. (2011). Atmospheric pressure plasma technology: A straightforward deposition of antibacterial coatings. Plasma Processes and Polymers, 8(1), 59-69. doi:10.1002/ppap.201000054.
  • Shın, J. K., & Pyun, Y. R. (1997). Inactivation of Lactobacillus plantarum by pulsed‐microwave irradiation. Journal of Food Science, 62(1), 163-166. doi:10.1111/j.1365-2621.1997.tb04391.x.
  • Thirumdas, R., Sarangapani, C., & S.Annapure, U. (2015). Cold plasma: A novel non-thermal technology for food processing. Food Biophysics, 10, 1-11. doi:10.1007/s11483-014-9382-z.
  • Uslu, M. K., & Certel , M. (2006). Dielektrik ısıtma ve gıda işlemede kullanımı. Teknolojik Araştırmalar GTED, 3(1), 61-69. (Turkish).
  • Varilla, C., Marcone, M., & Annor, G. A. (2020). Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods, 9(10), 1-17. doi:10.3390/foods9101435.
  • Vladic, J., Duarte , A., Radman , S., Simic, S., & Jerkovic, I. (2021). Enzymatic and microwave pretreatments and supercritical CO2 extraction for improving extraction efficiency and quality of Origanum vulgare L. spp. hirtum extracts. Plants, 11(1), 1-15. doi:10.3390/plants11010054.
  • Yakıncı, Z. D. (2016). Elektromanyetik alanın insan sağlığı üzerindeki etkileri. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu Dergisi, 4(2), 1-11. (Turkish).
  • Yangılar, F., & Oğuzhan, P. (2013). Plazma teknolojilerinin gıda endüstrisinde kullanımı. Gıda, 38(3), 183-189. (Turkish).
  • Yun , H., Kim , B., Jung, S., Kruk, Z. A., Kim, D. B., Choe, W., & Jo, C. (2010). Inactivation of Listeria monocytogenes inoculated on disposable plastic tray, aluminum foil, and paper cup by atmospheric pressure plasma. Food Control, 21(8), 1182-1186. doi:10.1016/j.foodcont.2010.02.002.
  • Yüksel, Ç. Y., & Karagözlü, N. (2017). Soğuk atmosferik plazma teknolojisi ve gıdalarda kullanımı. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 14(2), 81-86. (Turkish).

Innovative approaches in the food industry: Microwave plasma technology and applicability in foods

Year 2024, Volume: 5 Issue: 2, 25 - 29
https://doi.org/10.55147/efse.1479642

Abstract

In this study, the use of microwave technique, which is becoming increasingly widespread in the food sector, and the advantages of microwave plasma technology, which has not yet been used much in the food sector, and the production of microwave plasma assembly in laboratory size. In food technology, plasma can be applied hot and cold. Inert gases are used in plasma formation and low-level microwave energy is also used. Additionally, the use of oxygen gas in the current system increases oxidative stress on microorganisms found in foods. Since plasma formation occurs under strong vacuum, it also effectively provides microbial inactivation in food systems. Cold and low-pressure plasma technology has emerged as a promising and innovative method for the microbial inactivation on dry food surfaces. Therefore, microwave plasma system has an important potential to use in many food systems such as spices, dried fruits and vegetables. In this context, the microwave plasma setup was created by us in this study. A strong vacuum system is required for the formation of microwave plasma. In addition, it has been determined that the application time is very important for the application of microwave plasma in foods and that there are structural deterioration in foods over a certain period of time. As a result, it is understood that food poisoning can be prevented by using microwave plasma in foods, and this will contribute to extending the shelf life of foods, and therefore the technique needs to be further investigated and considered in food applications.

References

  • Akan, T. (2006). Maddenin 4. hali plazma ve temel özellikleri. Elektronik Çağdaş Fizik Dergisi, 4(1), 1-10. (Turkish)
  • Albayrak, A., & Kılıç, G. B. (2020). Application of plasma technology in food processing. Turkish Journal of Agriculture-Food Science and Technology, 8(11), 2300-2306. doi:10.24925/turjaf.v8i11.2300-2306.3134
  • Aydın, Ö. Ş., Birlik, P. M., & Şahan, Y. (2023). Soğuk plazma uygulamasının gıda bileşenleri üzerine etkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 37(2), 477-498. (Turkish).
  • Baier M., Görgen M., Fröhling A., Herppich W. B., Ehlbeck, J., Knorr, D., &Schlüter, O. (2012). Fresh produce decontamination by an atmospheric pressure plasma-jet. In Proceedings of the 11th International Congress on Engineering and Food ICEF(3), 1-5.
  • Bozkurt, D. (2014). Effects of cold plasma treatment on vitamins and polyphenol oxidase (PPO) enzyme activity. Ph.D Thesis, Hacettepe University Institute of Science, Ankara.
  • Cavagnaro, P. F., Camargo, A., Galmarini, C. R., & Simon, P. W. (2007). Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. Journal of Agricultural and Food Chemistry, 55(4), 1280-1288. doi:10.1021/jf062587s.
  • Çınar, K. (2011). Design and construction of a microwave plasma ion source. Ph.D Thesis, Middle East Technical University Institute of Science, Ankara.
  • Çoruhlu, T. (2017). Tarım Sektöründe Soğuk Atmosferik Plazma Teknolojilerinin Kullanımı. İleri Teknolojiler V. Çalıştayı, 1-10, İstanbul. (Turkish).
  • Ekezie, F. G. C., Sun , D. W., & Cheng , J. H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology, 69, 46-58. doi:10.1016/j.tifs.2017.08.007.
  • Güleç , H. A. (2012). Gıda endüstrisinde ısıl olmayan plazma teknolojileri. Gıda, 37(5), 295-302. (Turkish).
  • Kasar, H. (2022). Use of microwave plasma technology in food/catering sector: The case of dried mantı production. Ph.D Thesis, Karamanoğlu Mehmetbey University Institute of Social Sciences, Karaman.
  • Kasar, H., Süleyman, G., & Çağlar, A. (2021). Mikrodalga plazmanın ve infrared radyosyanların gıdalarda ve yemek sanayinde kullanımı. Novel Gıdalar, Medıhealt Academy Yayıncılık.
  • Kim, J. S., Lee, E. J., Cho, E. A., & Kim, Y. J. (2013). Inactivation of Campylobacter jejuni using radio-frequency atmospheric pressure plasma on agar plates and chicken hams. Korean Journal for Food Science of Animal Resources, 33(3), 317-324. doi:10.5851/kosfa.2013.33.3.317.
  • Konak, Ü. İ., Certel, M., & Helh, S. (2009). Gıda sanayisinde mikrodalga uygulamaları. Gıda Teknolojileri Elektronik Dergisi, 4(3), 20-31. (Turkish).
  • Kumar, V., Pulpytel, J., Giudetti, G., Rauscher, H., Rossi, F., & ArefiKhonsari, F. (2011). Amphiphilic copolymer coatings via plasma polymerisation process: Switching and anti‐biofouling characteristics. Plasma Processes and Polymers, 8(5), 373-385. doi:10.1002/ppap.201000109.
  • Kuşlu, S., & Bayramoğlu, M. (2011). Mikrodalgalar ile materyaller arasındaki termal olan ve olmayan etkileşimlerin incelenmesi ve mikrodalga kimyası. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(3), 395-405. (Turkish).
  • Laroussi, M. (2005). Low temperature plasma‐based sterilization: Overview and state‐of‐the‐art. Plasma processes and polymers, 2(5), 391-400. doi:10.1002/ppap.200400078.
  • Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and Applied Chemistry, 74(3), 349-358. doi:10.1351/pac200274030349.
  • Oliveira, M., & Franca, A. (2002). Microwave heating of foodstuffs. Journal of Food Engineering(53), 347-359. doi:10.1016/S0260-8774(01)00176-5.
  • Özer, P., Görgüç, A., & Yılmaz, F. M. (2018). Mikrodalga teknolojisinin bitkisel dokulardan makro ve mikro bileşenlerin özütlenmesinde kullanımı. GIDA/The Journal of Food, 43(5), 765-775. doi:10.15237/gida.GD18060.
  • Pankaja, S., Bueno-Ferrer, C., Misra, N., Milosavljevic, V., O’Donnell, C., Bourke, P., & Cullen, P. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 35(1), 5-17. doi:10.1016/j.tifs.2013.10.009.
  • Reçber, D., Kayserilioğlu, B., Koçum, İ. C., & Serdaroğlu, D. Ç. (2018). Medikal plazma tabanlı mikrocerrahi cihazında donanımsal özellikler ve yapılandırılma. Tıp Teknolojileri Kongresi, 226-230. Gazi Magosa / KKTC.
  • Sarghini, S., Paulussen, S., & Terryn, H. (2011). Atmospheric pressure plasma technology: A straightforward deposition of antibacterial coatings. Plasma Processes and Polymers, 8(1), 59-69. doi:10.1002/ppap.201000054.
  • Shın, J. K., & Pyun, Y. R. (1997). Inactivation of Lactobacillus plantarum by pulsed‐microwave irradiation. Journal of Food Science, 62(1), 163-166. doi:10.1111/j.1365-2621.1997.tb04391.x.
  • Thirumdas, R., Sarangapani, C., & S.Annapure, U. (2015). Cold plasma: A novel non-thermal technology for food processing. Food Biophysics, 10, 1-11. doi:10.1007/s11483-014-9382-z.
  • Uslu, M. K., & Certel , M. (2006). Dielektrik ısıtma ve gıda işlemede kullanımı. Teknolojik Araştırmalar GTED, 3(1), 61-69. (Turkish).
  • Varilla, C., Marcone, M., & Annor, G. A. (2020). Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods, 9(10), 1-17. doi:10.3390/foods9101435.
  • Vladic, J., Duarte , A., Radman , S., Simic, S., & Jerkovic, I. (2021). Enzymatic and microwave pretreatments and supercritical CO2 extraction for improving extraction efficiency and quality of Origanum vulgare L. spp. hirtum extracts. Plants, 11(1), 1-15. doi:10.3390/plants11010054.
  • Yakıncı, Z. D. (2016). Elektromanyetik alanın insan sağlığı üzerindeki etkileri. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu Dergisi, 4(2), 1-11. (Turkish).
  • Yangılar, F., & Oğuzhan, P. (2013). Plazma teknolojilerinin gıda endüstrisinde kullanımı. Gıda, 38(3), 183-189. (Turkish).
  • Yun , H., Kim , B., Jung, S., Kruk, Z. A., Kim, D. B., Choe, W., & Jo, C. (2010). Inactivation of Listeria monocytogenes inoculated on disposable plastic tray, aluminum foil, and paper cup by atmospheric pressure plasma. Food Control, 21(8), 1182-1186. doi:10.1016/j.foodcont.2010.02.002.
  • Yüksel, Ç. Y., & Karagözlü, N. (2017). Soğuk atmosferik plazma teknolojisi ve gıdalarda kullanımı. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 14(2), 81-86. (Turkish).
There are 32 citations in total.

Details

Primary Language English
Subjects Food Engineering, Food Sustainability, Food Sciences (Other)
Journal Section Review
Authors

Hüsnü Kasar 0000-0002-4343-5229

Suleyman Gökmen 0000-0002-7397-6966

Hasan Yetim 0000-0002-5388-5856

Ferhat Bozduman 0000-0002-2669-021X

Early Pub Date October 31, 2024
Publication Date
Submission Date May 8, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Kasar, H., Gökmen, S., Yetim, H., Bozduman, F. (2024). Innovative approaches in the food industry: Microwave plasma technology and applicability in foods. European Food Science and Engineering, 5(2), 25-29. https://doi.org/10.55147/efse.1479642